Wechseln zu: Navigation, Suche

General

Display information for equation id:52 on page id:457

* Page found: Reale Gase (eq 52) (force rerendering)

Occurences on the following pages:

   Reale Gase Eq: 52
TeX (as stored in database):
\begin{align}
 
& du={{\left( \frac{\partial u}{\partial T} \right)}_{V}}dT+{{\left( \frac{\partial u}{\partial v} \right)}_{T}}dv={{c}_{v}}dT+\frac{a}{{{v}^{2}}}dv \\
 
& u\left( T,v \right)={{c}_{v}}T-\frac{a}{v}+const. \\
 
\end{align}
MathML (14.18 KB / 2.142 KB) :
du=(uT)VdT+(uv)Tdv=cvdT+av2dvdusubscriptuTVdTsubscriptuvTdvsubscriptcvdTasuperscriptv2dv\displaystyle du={{\left(\frac{\partial u}{\partial T}\right)}_{{V}}}dT+{{% \left(\frac{\partial u}{\partial v}\right)}_{{T}}}dv={{c}_{{v}}}dT+\frac{a}{{{% v}^{{2}}}}dv
u(T,v)=cvT-av+const.uTvsubscriptcvTavconst\displaystyle u\left(T,v\right)={{c}_{{v}}}T-\frac{a}{v}+const.

SVG (0 B / 8 B) :
PNG (0 B / 8 B) :
Hash : 9b613c4c54aa2843585e4d8e315ad6cf

Similar pages

Calculataed based on the variables occuring on the entire Reale Gase page

  1. Thermodynamische Potenziale similarity 4.9793279%
  2. Phasenübergänge similarity 4.93780699%
  3. Der harmonische Oszillator similarity 4.58120513%
  4. Räumliche Isotropie similarity 4.46212637%
  5. Das ideale Gas similarity 4.29754729%
  6. Das ideale Fermigas similarity 4.28713403%
  7. Klassisch- mechanische Gleichgewichtsverteilungen similarity 4.1859383%
  8. Kanonisches Enseble similarity 4.10721776%
  9. Elektrische Multipolentwicklung similarity 4.00254052%
  10. Symmetrien und Erhaltungsgrößen similarity 3.94209876%

Variables

19 results

  • mo . (1/6/350)
  • mi o (1/7/754)
  • mi u (4/20/1504)
  • mi c (3/37/2835)
  • mi s (1/19/3214)
  • mi V (9/211/3347)
  • mi a (2/37/5608)
  • mi d (5/65/6342)
  • mi n (1/85/6684)
  • mo + (3/54/6970)
  • mo (4/133/7333)
  • mo , (1/19/8858)
  • mo (4/142/9643)
  • mi T (7/142/10589)
  • mo - (1/106/10795)
  • mo = (3/144/18270)
  • mo ( (3/169/18822)
  • mo ) (3/169/18905)
  • mo (15/419/59187)

MathML


<table class="equationgroup ltx_align">
 
<tr id="S0.Ex1" class="equation baseline">
<td class="eqpad"/>
<td colspan="1" class="td right" style="text-align:right;"/>
<td colspan="1" class="td left" style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\displaystyle du={{\left(\frac{\partial u}{\partial T}\right)}_{{V}}}dT+{{%&#10;\left(\frac{\partial u}{\partial v}\right)}_{{T}}}dv={{c}_{{v}}}dT+\frac{a}{{{%&#10;v}^{{2}}}}dv" id="S0.Ex1.m2.1" display="inline" xref="S0.Ex1.m2.1.cmml"><semantics id="S0.Ex1.m2.1a" xref="S0.Ex1.m2.1.cmml"><mrow id="S0.Ex1.m2.1.26" xref="S0.Ex1.m2.1.26.cmml"><mrow id="S0.Ex1.m2.1.26.2" xref="S0.Ex1.m2.1.26.2.cmml"><mi id="S0.Ex1.m2.1.1" xref="S0.Ex1.m2.1.1.cmml">d</mi><mo id="S0.Ex1.m2.1.26.2.1" xref="S0.Ex1.m2.1.26.2.1.cmml"></mo><mi id="S0.Ex1.m2.1.2" xref="S0.Ex1.m2.1.2.cmml">u</mi></mrow><mo id="S0.Ex1.m2.1.3" xref="S0.Ex1.m2.1.3.cmml">=</mo><mrow id="S0.Ex1.m2.1.26.3" xref="S0.Ex1.m2.1.26.3.cmml"><mrow id="S0.Ex1.m2.1.26.3.1" xref="S0.Ex1.m2.1.26.3.1.cmml"><msub id="S0.Ex1.m2.1.26.3.1.2" xref="S0.Ex1.m2.1.26.3.1.2.cmml"><mrow id="S0.Ex1.m2.1.5" xref="S0.Ex1.m2.1.5.cmml"><mo id="S0.Ex1.m2.1.5a" xref="S0.Ex1.m2.1.5.cmml">(</mo><mstyle displaystyle="true" id="S0.Ex1.m2.1.5b" xref="S0.Ex1.m2.1.5.cmml"><mfrac id="S0.Ex1.m2.1.5c" xref="S0.Ex1.m2.1.5.cmml"><mrow id="S0.Ex1.m2.1.5.2" xref="S0.Ex1.m2.1.5.2.cmml"><mo id="S0.Ex1.m2.1.5.2.1" xref="S0.Ex1.m2.1.5.2.1.cmml"></mo><mo id="S0.Ex1.m2.1.5.2a" xref="S0.Ex1.m2.1.5.2.cmml"></mo><mi id="S0.Ex1.m2.1.5.2.2" xref="S0.Ex1.m2.1.5.2.2.cmml">u</mi></mrow><mrow id="S0.Ex1.m2.1.5.3" xref="S0.Ex1.m2.1.5.3.cmml"><mo id="S0.Ex1.m2.1.5.3.1" xref="S0.Ex1.m2.1.5.3.1.cmml"></mo><mo id="S0.Ex1.m2.1.5.3a" xref="S0.Ex1.m2.1.5.3.cmml"></mo><mi id="S0.Ex1.m2.1.5.3.2" xref="S0.Ex1.m2.1.5.3.2.cmml">T</mi></mrow></mfrac></mstyle><mo id="S0.Ex1.m2.1.5d" xref="S0.Ex1.m2.1.5.cmml">)</mo></mrow><mi id="S0.Ex1.m2.1.7.1" xref="S0.Ex1.m2.1.7.1.cmml">V</mi></msub><mo id="S0.Ex1.m2.1.26.3.1.1" xref="S0.Ex1.m2.1.26.3.1.1.cmml"></mo><mi id="S0.Ex1.m2.1.8" xref="S0.Ex1.m2.1.8.cmml">d</mi><mo id="S0.Ex1.m2.1.26.3.1.1a" xref="S0.Ex1.m2.1.26.3.1.1.cmml"></mo><mi id="S0.Ex1.m2.1.9" xref="S0.Ex1.m2.1.9.cmml">T</mi></mrow><mo id="S0.Ex1.m2.1.10" xref="S0.Ex1.m2.1.10.cmml">+</mo><mrow id="S0.Ex1.m2.1.26.3.2" xref="S0.Ex1.m2.1.26.3.2.cmml"><msub id="S0.Ex1.m2.1.26.3.2.2" xref="S0.Ex1.m2.1.26.3.2.2.cmml"><mrow id="S0.Ex1.m2.1.12" xref="S0.Ex1.m2.1.12.cmml"><mo id="S0.Ex1.m2.1.12a" xref="S0.Ex1.m2.1.12.cmml">(</mo><mstyle displaystyle="true" id="S0.Ex1.m2.1.12b" xref="S0.Ex1.m2.1.12.cmml"><mfrac id="S0.Ex1.m2.1.12c" xref="S0.Ex1.m2.1.12.cmml"><mrow id="S0.Ex1.m2.1.12.2" xref="S0.Ex1.m2.1.12.2.cmml"><mo id="S0.Ex1.m2.1.12.2.1" xref="S0.Ex1.m2.1.12.2.1.cmml"></mo><mo id="S0.Ex1.m2.1.12.2a" xref="S0.Ex1.m2.1.12.2.cmml"></mo><mi id="S0.Ex1.m2.1.12.2.2" xref="S0.Ex1.m2.1.12.2.2.cmml">u</mi></mrow><mrow id="S0.Ex1.m2.1.12.3" xref="S0.Ex1.m2.1.12.3.cmml"><mo id="S0.Ex1.m2.1.12.3.1" xref="S0.Ex1.m2.1.12.3.1.cmml"></mo><mo id="S0.Ex1.m2.1.12.3a" xref="S0.Ex1.m2.1.12.3.cmml"></mo><mi id="S0.Ex1.m2.1.12.3.2" xref="S0.Ex1.m2.1.12.3.2.cmml">v</mi></mrow></mfrac></mstyle><mo id="S0.Ex1.m2.1.12d" xref="S0.Ex1.m2.1.12.cmml">)</mo></mrow><mi id="S0.Ex1.m2.1.14.1" xref="S0.Ex1.m2.1.14.1.cmml">T</mi></msub><mo id="S0.Ex1.m2.1.26.3.2.1" xref="S0.Ex1.m2.1.26.3.2.1.cmml"></mo><mi id="S0.Ex1.m2.1.15" xref="S0.Ex1.m2.1.15.cmml">d</mi><mo id="S0.Ex1.m2.1.26.3.2.1a" xref="S0.Ex1.m2.1.26.3.2.1.cmml"></mo><mi id="S0.Ex1.m2.1.16" xref="S0.Ex1.m2.1.16.cmml">v</mi></mrow></mrow><mo id="S0.Ex1.m2.1.17" xref="S0.Ex1.m2.1.17.cmml">=</mo><mrow id="S0.Ex1.m2.1.26.4" xref="S0.Ex1.m2.1.26.4.cmml"><mrow id="S0.Ex1.m2.1.26.4.1" xref="S0.Ex1.m2.1.26.4.1.cmml"><msub id="S0.Ex1.m2.1.26.4.1.2" xref="S0.Ex1.m2.1.26.4.1.2.cmml"><mi id="S0.Ex1.m2.1.18" xref="S0.Ex1.m2.1.18.cmml">c</mi><mi id="S0.Ex1.m2.1.19.1" xref="S0.Ex1.m2.1.19.1.cmml">v</mi></msub><mo id="S0.Ex1.m2.1.26.4.1.1" xref="S0.Ex1.m2.1.26.4.1.1.cmml"></mo><mi id="S0.Ex1.m2.1.20" xref="S0.Ex1.m2.1.20.cmml">d</mi><mo id="S0.Ex1.m2.1.26.4.1.1a" xref="S0.Ex1.m2.1.26.4.1.1.cmml"></mo><mi id="S0.Ex1.m2.1.21" xref="S0.Ex1.m2.1.21.cmml">T</mi></mrow><mo id="S0.Ex1.m2.1.22" xref="S0.Ex1.m2.1.22.cmml">+</mo><mrow id="S0.Ex1.m2.1.26.4.2" xref="S0.Ex1.m2.1.26.4.2.cmml"><mstyle displaystyle="true" id="S0.Ex1.m2.1.23" xref="S0.Ex1.m2.1.23.cmml"><mfrac id="S0.Ex1.m2.1.23a" xref="S0.Ex1.m2.1.23.cmml"><mi id="S0.Ex1.m2.1.23.2" xref="S0.Ex1.m2.1.23.2.cmml">a</mi><msup id="S0.Ex1.m2.1.23.3" xref="S0.Ex1.m2.1.23.3.cmml"><mi id="S0.Ex1.m2.1.23.3.1" xref="S0.Ex1.m2.1.23.3.1.cmml">v</mi><mn id="S0.Ex1.m2.1.23.3.2.1" xref="S0.Ex1.m2.1.23.3.2.1.cmml">2</mn></msup></mfrac></mstyle><mo id="S0.Ex1.m2.1.26.4.2.1" xref="S0.Ex1.m2.1.26.4.2.1.cmml"></mo><mi id="S0.Ex1.m2.1.24" xref="S0.Ex1.m2.1.24.cmml">d</mi><mo id="S0.Ex1.m2.1.26.4.2.1a" xref="S0.Ex1.m2.1.26.4.2.1.cmml"></mo><mi id="S0.Ex1.m2.1.25" xref="S0.Ex1.m2.1.25.cmml">v</mi></mrow></mrow></mrow><annotation-xml id="S0.Ex1.m2.1.cmml" encoding="MathML-Content" xref="S0.Ex1.m2.1"><apply id="S0.Ex1.m2.1.26.cmml" xref="S0.Ex1.m2.1.26"><and id="S0.Ex1.m2.1.26a.cmml" xref="S0.Ex1.m2.1.26"/><apply id="S0.Ex1.m2.1.26b.cmml" xref="S0.Ex1.m2.1.26"><eq id="S0.Ex1.m2.1.3.cmml" xref="S0.Ex1.m2.1.3"/><apply id="S0.Ex1.m2.1.26.2.cmml" xref="S0.Ex1.m2.1.26.2"><times id="S0.Ex1.m2.1.26.2.1.cmml" xref="S0.Ex1.m2.1.26.2.1"/><ci id="S0.Ex1.m2.1.1.cmml" xref="S0.Ex1.m2.1.1">d</ci><ci id="S0.Ex1.m2.1.2.cmml" xref="S0.Ex1.m2.1.2">u</ci></apply><apply id="S0.Ex1.m2.1.26.3.cmml" xref="S0.Ex1.m2.1.26.3"><plus id="S0.Ex1.m2.1.10.cmml" xref="S0.Ex1.m2.1.10"/><apply id="S0.Ex1.m2.1.26.3.1.cmml" xref="S0.Ex1.m2.1.26.3.1"><times id="S0.Ex1.m2.1.26.3.1.1.cmml" xref="S0.Ex1.m2.1.26.3.1.1"/><apply id="S0.Ex1.m2.1.26.3.1.2.cmml" xref="S0.Ex1.m2.1.26.3.1.2"><csymbol cd="ambiguous" id="S0.Ex1.m2.1.26.3.1.2.1.cmml">subscript</csymbol><apply id="S0.Ex1.m2.1.5.cmml" xref="S0.Ex1.m2.1.5"><divide id="S0.Ex1.m2.1.5.1.cmml"/><apply id="S0.Ex1.m2.1.5.2.cmml" xref="S0.Ex1.m2.1.5.2"><partialdiff id="S0.Ex1.m2.1.5.2.1.cmml" xref="S0.Ex1.m2.1.5.2.1"/><ci id="S0.Ex1.m2.1.5.2.2.cmml" xref="S0.Ex1.m2.1.5.2.2">u</ci></apply><apply id="S0.Ex1.m2.1.5.3.cmml" xref="S0.Ex1.m2.1.5.3"><partialdiff id="S0.Ex1.m2.1.5.3.1.cmml" xref="S0.Ex1.m2.1.5.3.1"/><ci id="S0.Ex1.m2.1.5.3.2.cmml" xref="S0.Ex1.m2.1.5.3.2">T</ci></apply></apply><ci id="S0.Ex1.m2.1.7.1.cmml" xref="S0.Ex1.m2.1.7.1">V</ci></apply><ci id="S0.Ex1.m2.1.8.cmml" xref="S0.Ex1.m2.1.8">d</ci><ci id="S0.Ex1.m2.1.9.cmml" xref="S0.Ex1.m2.1.9">T</ci></apply><apply id="S0.Ex1.m2.1.26.3.2.cmml" xref="S0.Ex1.m2.1.26.3.2"><times id="S0.Ex1.m2.1.26.3.2.1.cmml" xref="S0.Ex1.m2.1.26.3.2.1"/><apply id="S0.Ex1.m2.1.26.3.2.2.cmml" xref="S0.Ex1.m2.1.26.3.2.2"><csymbol cd="ambiguous" id="S0.Ex1.m2.1.26.3.2.2.1.cmml">subscript</csymbol><apply id="S0.Ex1.m2.1.12.cmml" xref="S0.Ex1.m2.1.12"><divide id="S0.Ex1.m2.1.12.1.cmml"/><apply id="S0.Ex1.m2.1.12.2.cmml" xref="S0.Ex1.m2.1.12.2"><partialdiff id="S0.Ex1.m2.1.12.2.1.cmml" xref="S0.Ex1.m2.1.12.2.1"/><ci id="S0.Ex1.m2.1.12.2.2.cmml" xref="S0.Ex1.m2.1.12.2.2">u</ci></apply><apply id="S0.Ex1.m2.1.12.3.cmml" xref="S0.Ex1.m2.1.12.3"><partialdiff id="S0.Ex1.m2.1.12.3.1.cmml" xref="S0.Ex1.m2.1.12.3.1"/><ci id="S0.Ex1.m2.1.12.3.2.cmml" xref="S0.Ex1.m2.1.12.3.2">v</ci></apply></apply><ci id="S0.Ex1.m2.1.14.1.cmml" xref="S0.Ex1.m2.1.14.1">T</ci></apply><ci id="S0.Ex1.m2.1.15.cmml" xref="S0.Ex1.m2.1.15">d</ci><ci id="S0.Ex1.m2.1.16.cmml" xref="S0.Ex1.m2.1.16">v</ci></apply></apply></apply><apply id="S0.Ex1.m2.1.26c.cmml" xref="S0.Ex1.m2.1.26"><eq id="S0.Ex1.m2.1.17.cmml" xref="S0.Ex1.m2.1.17"/><share href="#S0.Ex1.m2.1.26.3.cmml" id="S0.Ex1.m2.1.26d.cmml" xref="S0.Ex1.m2.1.26"/><apply id="S0.Ex1.m2.1.26.4.cmml" xref="S0.Ex1.m2.1.26.4"><plus id="S0.Ex1.m2.1.22.cmml" xref="S0.Ex1.m2.1.22"/><apply id="S0.Ex1.m2.1.26.4.1.cmml" xref="S0.Ex1.m2.1.26.4.1"><times id="S0.Ex1.m2.1.26.4.1.1.cmml" xref="S0.Ex1.m2.1.26.4.1.1"/><apply id="S0.Ex1.m2.1.26.4.1.2.cmml" xref="S0.Ex1.m2.1.26.4.1.2"><csymbol cd="ambiguous" id="S0.Ex1.m2.1.26.4.1.2.1.cmml">subscript</csymbol><ci id="S0.Ex1.m2.1.18.cmml" xref="S0.Ex1.m2.1.18">c</ci><ci id="S0.Ex1.m2.1.19.1.cmml" xref="S0.Ex1.m2.1.19.1">v</ci></apply><ci id="S0.Ex1.m2.1.20.cmml" xref="S0.Ex1.m2.1.20">d</ci><ci id="S0.Ex1.m2.1.21.cmml" xref="S0.Ex1.m2.1.21">T</ci></apply><apply id="S0.Ex1.m2.1.26.4.2.cmml" xref="S0.Ex1.m2.1.26.4.2"><times id="S0.Ex1.m2.1.26.4.2.1.cmml" xref="S0.Ex1.m2.1.26.4.2.1"/><apply id="S0.Ex1.m2.1.23.cmml" xref="S0.Ex1.m2.1.23"><divide id="S0.Ex1.m2.1.23.1.cmml"/><ci id="S0.Ex1.m2.1.23.2.cmml" xref="S0.Ex1.m2.1.23.2">a</ci><apply id="S0.Ex1.m2.1.23.3.cmml" xref="S0.Ex1.m2.1.23.3"><csymbol cd="ambiguous" id="S0.Ex1.m2.1.23.3.3.cmml">superscript</csymbol><ci id="S0.Ex1.m2.1.23.3.1.cmml" xref="S0.Ex1.m2.1.23.3.1">v</ci><cn type="integer" id="S0.Ex1.m2.1.23.3.2.1.cmml" xref="S0.Ex1.m2.1.23.3.2.1">2</cn></apply></apply><ci id="S0.Ex1.m2.1.24.cmml" xref="S0.Ex1.m2.1.24">d</ci><ci id="S0.Ex1.m2.1.25.cmml" xref="S0.Ex1.m2.1.25">v</ci></apply></apply></apply></apply></annotation-xml><annotation id="S0.Ex1.m2.1b" encoding="application/x-tex" xref="S0.Ex1.m2.1.cmml">\displaystyle du={{\left(\frac{\partial u}{\partial T}\right)}_{{V}}}dT+{{%
\left(\frac{\partial u}{\partial v}\right)}_{{T}}}dv={{c}_{{v}}}dT+\frac{a}{{{%
v}^{{2}}}}dv</annotation></semantics></math></td>
<td class="eqpad"/></tr>
<tr id="S0.Ex2" class="equation baseline">
<td class="eqpad"/>
<td colspan="1" class="td right" style="text-align:right;"/>
<td colspan="1" class="td left" style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\displaystyle u\left(T,v\right)={{c}_{{v}}}T-\frac{a}{v}+const." id="S0.Ex2.m2.1" display="inline" xref="S0.Ex2.m2.1.cmml"><semantics id="S0.Ex2.m2.1a" xref="S0.Ex2.m2.1.cmml"><mrow id="S0.Ex2.m2.1.20" xref="S0.Ex2.m2.1.20.cmml"><mrow id="S0.Ex2.m2.1.20a" xref="S0.Ex2.m2.1.20.cmml"><mrow id="S0.Ex2.m2.1.20.1" xref="S0.Ex2.m2.1.20.1.cmml"><mi id="S0.Ex2.m2.1.1" xref="S0.Ex2.m2.1.1.cmml">u</mi><mo id="S0.Ex2.m2.1.20.1.1" xref="S0.Ex2.m2.1.20.1.1.cmml"></mo><mrow id="S0.Ex2.m2.1.20.1.2" xref="S0.Ex2.m2.1.20.1.2.cmml"><mo id="S0.Ex2.m2.1.20.1.2a" xref="S0.Ex2.m2.1.20.1.2.cmml">(</mo><mrow id="S0.Ex2.m2.1.20.1.2b" xref="S0.Ex2.m2.1.20.1.2.cmml"><mi id="S0.Ex2.m2.1.3" xref="S0.Ex2.m2.1.3.cmml">T</mi><mo id="S0.Ex2.m2.1.20.1.2c" xref="S0.Ex2.m2.1.20.1.2.cmml">,</mo><mi id="S0.Ex2.m2.1.5" xref="S0.Ex2.m2.1.5.cmml">v</mi></mrow><mo id="S0.Ex2.m2.1.20.1.2d" xref="S0.Ex2.m2.1.20.1.2.cmml">)</mo></mrow></mrow><mo id="S0.Ex2.m2.1.7" xref="S0.Ex2.m2.1.7.cmml">=</mo><mrow id="S0.Ex2.m2.1.20.2" xref="S0.Ex2.m2.1.20.2.cmml"><mrow id="S0.Ex2.m2.1.20.2.1" xref="S0.Ex2.m2.1.20.2.1.cmml"><mrow id="S0.Ex2.m2.1.20.2.1.1" xref="S0.Ex2.m2.1.20.2.1.1.cmml"><msub id="S0.Ex2.m2.1.20.2.1.1.2" xref="S0.Ex2.m2.1.20.2.1.1.2.cmml"><mi id="S0.Ex2.m2.1.8" xref="S0.Ex2.m2.1.8.cmml">c</mi><mi id="S0.Ex2.m2.1.9.1" xref="S0.Ex2.m2.1.9.1.cmml">v</mi></msub><mo id="S0.Ex2.m2.1.20.2.1.1.1" xref="S0.Ex2.m2.1.20.2.1.1.1.cmml"></mo><mi id="S0.Ex2.m2.1.10" xref="S0.Ex2.m2.1.10.cmml">T</mi></mrow><mo id="S0.Ex2.m2.1.11" xref="S0.Ex2.m2.1.11.cmml">-</mo><mstyle displaystyle="true" id="S0.Ex2.m2.1.12" xref="S0.Ex2.m2.1.12.cmml"><mfrac id="S0.Ex2.m2.1.12a" xref="S0.Ex2.m2.1.12.cmml"><mi id="S0.Ex2.m2.1.12.2" xref="S0.Ex2.m2.1.12.2.cmml">a</mi><mi id="S0.Ex2.m2.1.12.3" xref="S0.Ex2.m2.1.12.3.cmml">v</mi></mfrac></mstyle></mrow><mo id="S0.Ex2.m2.1.13" xref="S0.Ex2.m2.1.13.cmml">+</mo><mrow id="S0.Ex2.m2.1.20.2.2" xref="S0.Ex2.m2.1.20.2.2.cmml"><mi id="S0.Ex2.m2.1.14" xref="S0.Ex2.m2.1.14.cmml">c</mi><mo id="S0.Ex2.m2.1.20.2.2.1" xref="S0.Ex2.m2.1.20.2.2.1.cmml"></mo><mi id="S0.Ex2.m2.1.15" xref="S0.Ex2.m2.1.15.cmml">o</mi><mo id="S0.Ex2.m2.1.20.2.2.1a" xref="S0.Ex2.m2.1.20.2.2.1.cmml"></mo><mi id="S0.Ex2.m2.1.16" xref="S0.Ex2.m2.1.16.cmml">n</mi><mo id="S0.Ex2.m2.1.20.2.2.1b" xref="S0.Ex2.m2.1.20.2.2.1.cmml"></mo><mi id="S0.Ex2.m2.1.17" xref="S0.Ex2.m2.1.17.cmml">s</mi><mo id="S0.Ex2.m2.1.20.2.2.1c" xref="S0.Ex2.m2.1.20.2.2.1.cmml"></mo><mi id="S0.Ex2.m2.1.18" xref="S0.Ex2.m2.1.18.cmml">t</mi></mrow></mrow></mrow><mo id="S0.Ex2.m2.1.20b" xref="S0.Ex2.m2.1.20.cmml">.</mo></mrow><annotation-xml id="S0.Ex2.m2.1.cmml" encoding="MathML-Content" xref="S0.Ex2.m2.1"><apply id="S0.Ex2.m2.1.20.cmml" xref="S0.Ex2.m2.1.20"><eq id="S0.Ex2.m2.1.7.cmml" xref="S0.Ex2.m2.1.7"/><apply id="S0.Ex2.m2.1.20.1.cmml" xref="S0.Ex2.m2.1.20.1"><times id="S0.Ex2.m2.1.20.1.1.cmml" xref="S0.Ex2.m2.1.20.1.1"/><ci id="S0.Ex2.m2.1.1.cmml" xref="S0.Ex2.m2.1.1">u</ci><apply id="S0.Ex2.m2.1.20.1.2.cmml" xref="S0.Ex2.m2.1.20.1.2"><interval closure="open" id="S0.Ex2.m2.1.20.1.2.1.cmml"/><ci id="S0.Ex2.m2.1.3.cmml" xref="S0.Ex2.m2.1.3">T</ci><ci id="S0.Ex2.m2.1.5.cmml" xref="S0.Ex2.m2.1.5">v</ci></apply></apply><apply id="S0.Ex2.m2.1.20.2.cmml" xref="S0.Ex2.m2.1.20.2"><plus id="S0.Ex2.m2.1.13.cmml" xref="S0.Ex2.m2.1.13"/><apply id="S0.Ex2.m2.1.20.2.1.cmml" xref="S0.Ex2.m2.1.20.2.1"><minus id="S0.Ex2.m2.1.11.cmml" xref="S0.Ex2.m2.1.11"/><apply id="S0.Ex2.m2.1.20.2.1.1.cmml" xref="S0.Ex2.m2.1.20.2.1.1"><times id="S0.Ex2.m2.1.20.2.1.1.1.cmml" xref="S0.Ex2.m2.1.20.2.1.1.1"/><apply id="S0.Ex2.m2.1.20.2.1.1.2.cmml" xref="S0.Ex2.m2.1.20.2.1.1.2"><csymbol cd="ambiguous" id="S0.Ex2.m2.1.20.2.1.1.2.1.cmml">subscript</csymbol><ci id="S0.Ex2.m2.1.8.cmml" xref="S0.Ex2.m2.1.8">c</ci><ci id="S0.Ex2.m2.1.9.1.cmml" xref="S0.Ex2.m2.1.9.1">v</ci></apply><ci id="S0.Ex2.m2.1.10.cmml" xref="S0.Ex2.m2.1.10">T</ci></apply><apply id="S0.Ex2.m2.1.12.cmml" xref="S0.Ex2.m2.1.12"><divide id="S0.Ex2.m2.1.12.1.cmml"/><ci id="S0.Ex2.m2.1.12.2.cmml" xref="S0.Ex2.m2.1.12.2">a</ci><ci id="S0.Ex2.m2.1.12.3.cmml" xref="S0.Ex2.m2.1.12.3">v</ci></apply></apply><apply id="S0.Ex2.m2.1.20.2.2.cmml" xref="S0.Ex2.m2.1.20.2.2"><times id="S0.Ex2.m2.1.20.2.2.1.cmml" xref="S0.Ex2.m2.1.20.2.2.1"/><ci id="S0.Ex2.m2.1.14.cmml" xref="S0.Ex2.m2.1.14">c</ci><ci id="S0.Ex2.m2.1.15.cmml" xref="S0.Ex2.m2.1.15">o</ci><ci id="S0.Ex2.m2.1.16.cmml" xref="S0.Ex2.m2.1.16">n</ci><ci id="S0.Ex2.m2.1.17.cmml" xref="S0.Ex2.m2.1.17">s</ci><ci id="S0.Ex2.m2.1.18.cmml" xref="S0.Ex2.m2.1.18">t</ci></apply></apply></apply></annotation-xml><annotation id="S0.Ex2.m2.1b" encoding="application/x-tex" xref="S0.Ex2.m2.1.cmml">\displaystyle u\left(T,v\right)={{c}_{{v}}}T-\frac{a}{v}+const.</annotation></semantics></math></td>
<td class="eqpad"/></tr>
</table>