Der Hamiltonsche kanonische Formalismus: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(9 dazwischenliegende Versionen von 8 Benutzern werden nicht angezeigt)
Zeile 4: Zeile 4:




<math>\begin{align}
:<math>\begin{align}
   & L({{q}_{1}},...,{{q}_{f}},{{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}},t) \\  
   & L({{q}_{1}},...,{{q}_{f}},{{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}},t) \\  
  & \Rightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0 \\  
  & \Rightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0 \\  
Zeile 15: Zeile 15:




<math>\frac{\partial L}{\partial {{q}_{k}}}=0\Rightarrow \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=const</math>
:<math>\frac{\partial L}{\partial {{q}_{k}}}=0\Rightarrow \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=const</math>




oder auch bei bestimmten Erweiterungen der Theorie ( Quantenmechanik, statistische Mechanik)
oder auch bei bestimmten Erweiterungen der Theorie (Quantenmechanik, statistische Mechanik)


ist es vorteilhaft, statt qk und deren Geschwindigkeiten qk und die zu qk konjugierten Impulse zu benutzen.
ist es vorteilhaft, statt qk und deren Geschwindigkeiten qk und die zu qk konjugierten Impulse zu benutzen.
Zeile 25: Zeile 25:




<math>{{p}_{k}}:=\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}</math>
:<math>{{p}_{k}}:=\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}</math>




Zeile 31: Zeile 31:




<math>\left( {{q}_{k}},{{{\dot{q}}}_{k}},t \right)\to \left( {{q}_{k}},{{p}_{k}},t \right)</math>
:<math>\left( {{q}_{k}},{{{\dot{q}}}_{k}},t \right)\to \left( {{q}_{k}},{{p}_{k}},t \right)</math>





Aktuelle Version vom 5. Juli 2011, 11:07 Uhr

Motivation

Die Lagrange- Theorie benutzt als dynamische Variablen die verallgemeinerten Koordinaten qk und deren Geschwindigkeiten:


L(q1,...,qf,q˙1,...,q˙f,t)ddtLq˙kLqk=0

k=1,..,f

Wir erhalten f DGL 2. Ordnung für qk(t) im Lagrangeformalismus

Bei gewissen Problemstellungen, wenn es beispielsweise zyklische Variablen gibt:


Lqk=0Lq˙k=const


oder auch bei bestimmten Erweiterungen der Theorie (Quantenmechanik, statistische Mechanik)

ist es vorteilhaft, statt qk und deren Geschwindigkeiten qk und die zu qk konjugierten Impulse zu benutzen.

Die zu den verallgemeinerten Koordinaten konjugierten Impulse lauten:


pk:=Lq˙k


Die erforderliche Variablentransformation


(qk,q˙k,t)(qk,pk,t)


leistet die sogenannte Legendre- Transformation.

Im Hamiltonformalismus ergeben sich nun 2f DGL 1. Ordnung für

qk(t) und pk(t)


Die Abfrage enthält eine leere Bedingung.