Dynamische Systeme und deterministisches Chaos: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(4 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 
Bisher wurden nur HAMILTONSCHE SYSTEME von Differentialgleichungen betrachtet. (Energieerhaltung, falls keine explizite Zeitabhängigkeit, sondern nur durch die Zeitabhängigkeit von q und p in H)
Bisher wurden nur HAMILTONSCHE SYSTEME von Differentialgleichungen betrachtet. ( Energieerhaltung, falls keine explizite Zeitabhängigkeit, sondern nur durch die Zeitabhängigkeit von q und p in H)


Jetzt sollen ganz allgemeine Systeme von Differentialgleichungen1. ordnung betrachtet werden. Beispielsweise Systeme mit Reibung.
Jetzt sollen ganz allgemeine Systeme von Differentialgleichungen1. ordnung betrachtet werden. Beispielsweise Systeme mit Reibung.
Zeile 15: Zeile 14:
# Wie ist die Abhängigkeit von äußeren Parametern (Kontrollparametern)
# Wie ist die Abhängigkeit von äußeren Parametern (Kontrollparametern)
# Wie ist die Stabilität gegen kleine äußere Störungen ?
# Wie ist die Stabilität gegen kleine äußere Störungen ?
# Wie stark sind die Systeme chaotisch ( also von Ungenauigkeiten in den Anfangsbedingunegn stark abhängig )?
# Wie stark sind die Systeme chaotisch (also von Ungenauigkeiten in den Anfangsbedingunegn stark abhängig)?
# kann man globale Aussagen über den dynamischen Fluß machen ? Also über die Gesamtheit aller Bahnen ?
# kann man globale Aussagen über den dynamischen Fluß machen ? Also über die Gesamtheit aller Bahnen ?
# sind die Lösungen geordnet oder ungeordnet ( := chaotisch)?
# sind die Lösungen geordnet oder ungeordnet (:= chaotisch)?


'''Qualitative Dynamik'''
'''Qualitative Dynamik'''
Zeile 25: Zeile 24:
'''Lit.:'''
'''Lit.:'''


F. Scheck, Mechanik ( Springer, 1988)
F. Scheck, Mechanik (Springer, 1988)


H.G. Schuster, deterministisches Chaos ( VHC, 1987)
H.G. Schuster, deterministisches Chaos (VHC, 1987)


{{Scripthinweis|Mechanik|7|0}}
{{Scripthinweis|Mechanik|7|0}}

Aktuelle Version vom 8. Juli 2011, 13:53 Uhr

Bisher wurden nur HAMILTONSCHE SYSTEME von Differentialgleichungen betrachtet. (Energieerhaltung, falls keine explizite Zeitabhängigkeit, sondern nur durch die Zeitabhängigkeit von q und p in H)

Jetzt sollen ganz allgemeine Systeme von Differentialgleichungen1. ordnung betrachtet werden. Beispielsweise Systeme mit Reibung.

  • dissipative Systeme.

Diese sind jedoch im Allgemeinen nicht integrabel. Das heißt, die Bahnkurven könneng ar nicht analytisch angegeben werden.

Es lassen sich jedoch numerische Lösungen finden.

Dabei werden jedoch folgende Fragen aufgeworfen:

  1. Wie ist das Langzeitverhalten derartiger Systeme ?
  2. Wie ist die Abhängigkeit von äußeren Parametern (Kontrollparametern)
  3. Wie ist die Stabilität gegen kleine äußere Störungen ?
  4. Wie stark sind die Systeme chaotisch (also von Ungenauigkeiten in den Anfangsbedingunegn stark abhängig)?
  5. kann man globale Aussagen über den dynamischen Fluß machen ? Also über die Gesamtheit aller Bahnen ?
  6. sind die Lösungen geordnet oder ungeordnet (:= chaotisch)?

Qualitative Dynamik

  • Betrachtung des Fluß als Ganzes, Stabilitätsaussagen, topologische STruktur und Langzeitverhalten in:

Lit.:

F. Scheck, Mechanik (Springer, 1988)

H.G. Schuster, deterministisches Chaos (VHC, 1987)


Die Abfrage enthält eine leere Bedingung.