Zustandsvektoren im Hilbertraum: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 247: | Zeile 247: | ||
\end{align}</math> | \end{align}</math> | ||
Eigenschaften der Funktionen, die H aufspannen: | Eigenschaften der Funktionen, die H aufspannen: | ||
=====Dual:===== | |||
:<math>\left\langle \Psi \right|=\int_{{{R}^{3}}}^{{}}{{{d}^{3}}p\left\langle \Psi | {\bar{p}} \right\rangle }\left\langle {\bar{p}} \right|=\int_{{{R}^{3}}}^{{}}{{{d}^{3}}r\left\langle \Psi | {\bar{r}} \right\rangle }\left\langle {\bar{r}} \right|</math> | |||
Man spricht auch vom " Einschieben einer 1!". | |||
:<math>\left\langle \Psi | {\bar{r}} \right\rangle =\int_{{{R}^{3}}}^{{}}{{{d}^{3}}p\left\langle \Psi | {\bar{p}} \right\rangle }\left\langle {\bar{p}} | {\bar{r}} \right\rangle =\int_{{{R}^{3}}}^{{}}{{{d}^{3}}p}\tilde{\Psi }(\bar{p})*{{\left( 2\pi \hbar \right)}^{-\tfrac{3}{2}}}{{e}^{-\frac{i}{\hbar }\bar{p}\bar{r}}}=\left\langle {\bar{r}} | \Psi \right\rangle *=\Psi (\bar{r})*</math> | |||
=====Skalarprodukt:===== | =====Skalarprodukt:===== | ||
:<math>\left\langle {{\Psi }_{1}} | {{\Psi }_{2}} \right\rangle =\int_{{{R}^{3}}}^{{}}{{{d}^{3}}r\left\langle {{\Psi }_{1}} | {\bar{r}} \right\rangle }\left\langle {\bar{r}} | {{\Psi }_{2}} \right\rangle =\int_{{{R}^{3}}}^{{}}{{{d}^{3}}r}{{\Psi }_{1}}(\bar{r})*{{\Psi }_{2}}(\bar{r})=\int_{{{R}^{3}}}^{{}}{{{d}^{3}}p}{{\tilde{\Psi }}_{1}}(\bar{p})*{{\tilde{\Psi }}_{2}}(\bar{p})</math> | :<math>\left\langle {{\Psi }_{1}} | {{\Psi }_{2}} \right\rangle =\int_{{{R}^{3}}}^{{}}{{{d}^{3}}r\left\langle {{\Psi }_{1}} | {\bar{r}} \right\rangle }\left\langle {\bar{r}} | {{\Psi }_{2}} \right\rangle =\int_{{{R}^{3}}}^{{}}{{{d}^{3}}r}{{\Psi }_{1}}(\bar{r})*{{\Psi }_{2}}(\bar{r})=\int_{{{R}^{3}}}^{{}}{{{d}^{3}}p}{{\tilde{\Psi }}_{1}}(\bar{p})*{{\tilde{\Psi }}_{2}}(\bar{p})</math> |
Aktuelle Version vom 9. August 2011, 13:23 Uhr
Der Artikel Zustandsvektoren im Hilbertraum basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 2.Kapitels (Abschnitt 1) der Quantenmechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Dabei wird zunächst noch keine Aussage über stationäre oder zeitabhängige Vektoren gemacht. Noch ist t einfach als Argument unterdrückt. (Zeitlosigkeit)
Fourier- Trafo der Impulsdarstellung liefert :
Laßt Euch hier nicht verwirren. Die Verwendung von x und k als kanonisch konjugierte Variablen ist völlig analog zu x- p als Variablen, denn wegen
entspricht die Verwendung von als kanonisch konjugierte Variable alleine der Mitnahme des Vorfaktors
Die Umkehrung ist nach dem Fourier- Theorem möglich:
Ergibt sich die gängige Darstellung
Dies ist die umkehrbare und Eindeutige Darstellung der Wellenfunktion in Orts- und Impulsdarstellung (Eindeutigkeit nach dem Sampling- Theorem).
Da die Natur der Dinge diese Transformation beinhaltet sind keine Informationen unter einem gewissen Produkt aus Ort und Impuls in der Wellenfunktion enthalten. (Sampling- Theorem) Da die Wellenfunktion aber per Definition das System vollständig beschreiben soll, kann in dem System keine Information enthalten sein, die eine größere Genauigkeit als diese der Unschärferelation aufweist.
Also ist die Heisenbergsche Unschärferelation der Ausdruck einer inhärenten Unschärfe, die in der Natur der Dinge liegt, wenn denn der Formalismus der Quantenmechanik und ihre Axiome richtig sind.
Wiederholung
Angesichts eines informationstheoretischen Zugangs zur Quantenmechanik ist dies eine wichtige Aussage:
Wir haben also als Transformationsvorschrift zwischen kanonisch konjugierten Variablen die Fouriertransformation:
Als minimale Einheit der Wirkung (gemäß Hamiltonschem Prinzip) gewinnen wir:
also für unser Informationsminimum:
Dies folgt unmittelbar aus der Fouriertransformation als Trafo- Vorschrift! (Sampling- Theorem)
Die Wellenfunktion kann unter dieser Quantisierung keine Information beinhalten!
Aber: Die Wellenfunktion beschriebt das System vollständig (Axiom der Quantenmechanik!)
Somit existiert in der Natur keine Information unter
Geometrische Analogie der Transformation zwischen Orts- und Impulsdarstellung:
Sei ein n- dimensionaler Vektorraum, das heißt, die Metrik sei durch ein euklidisches Skalarprodukt erklärt.
Seien , und drei beliebige Basen des .
Ein Vektor kann natürlich bezüglich der einen oder der anderen Basis dargestellt werden:
Die Basen sollen die folgenden Eigenschaften haben:
Die Projektion auf die Basisvektoren erfolgt durch die Bildung des Skalarproduktes:
Natürlich kann jeder Vektor in einer beliebigen Basis formal entwickelt werden. Die Entwicklungskoeffizienten sind die Projektionen auf die jeweiligen Basisvektoren und natürlich von der Wahl der Basis abhängig :
Im Sinne von:
Formal gilt damit:
Dies ist die VOLLSTÄNDIGKEITSRELATION: Die Basis- Vektoren spannen den n- dimensionalen auf. Übertragung auf Orts- und Impulsdarstellung quantentheoretischer Zustände: Der Zustandsvektor im Hilbertraum benötigt zur vollständigen Beschreibung einen 2n- dimensionalen Hilbertraum bei n Freiheitsgraden. In Orts- und Impulsdarstellung wird jedoch nur die jeweilige Komponente, ergo die Projektion der gesamten Wellenfunktion auf den Ortsanteil oder die Projektion der gesamten Wellenfunktion auf den Impulsanteil dargestellt. Dies ist vergleichbar mit einem System aus orthogonalen Achsen, wobei man die Projektion einer Funktion in diesem Raum auf eine bestimmte Anzahl von Achsen, beispielsweise auf die Anzahl Achsen, die die Bezeichnung tragen, betrachtet (Ortsdarstellung). Die Anteile sind jedoch natürlich nicht voneinander unabhängig, sondern sie gehen durch die Fouriertrafo ineinander über! Es macht ebenso Sinn, und als Projektionen eines abstrakten Zustandsvektors im Hilbertraum H auf die bzw. - Basis = Darstellung zu betrachten:
Axiome des Hilbertraums H:
Dadurch werden die Elemente aus H zu einer kommutativen Gruppe Weiter gilt: Distributivgesetz:
Das Assoziativgesetz und weitere Rechenregel bei Multiplikation mit 1 und Null aus den komplexen Zahlen:
2) H hat ein Skalarprodukt: mit:
Damit bereits kann gezeigt werden: Das Skalarprdukt induziert eine Norm:
Dabei ist letzteres, die Dreiecksungleichung, bedingt durch die Definition:
3) ist vollständig. Das heißt: Jede konvergente Folge konvergiert gegen ein Also: konvergente Folge von Eigenzuständen: Cauchy- Kriterium:
Bemerkungen
1) Die Norm verallgemeinert den Abstandsbegriff auf abstrakte Räume. Das Skalarprodukt verallgemeinert den Winkelbegriff auf abstrakte Räume:
2) Für gilt: (Schwarzsche Ungleichung) 3) Äquivalent sind und 4) Zu unterscheiden sind:
Zusammen (Skalarprodukt): Bra-c-ket
Dabei bilden die den zu dualen Hilbertraum
Aber: ist der zu duale Vektorraum, ist isomorph zu
5) heißt separabel, falls er eine überall dichte, abzählbare Teilmenge besitzt Das heißt: Dies ist äquivalent dazu, dass ein Hilbertraum H separabel heißt, wenn er eine abzählbare Hilbert- Basis besitzt, es also ein abzählbares, vollständig orthonormiertes System in H gibt. Eine Isometrie zwischen Hilberträumen H und K ist eine stetige, bijektive, lineare Abbildung so dass für alle . Anwendung auf die Ortsdarstellung
ist in der Ortsdarstellung eine Eigenfunktion (Wohlgemerkt, eine Funktion!) zum Impuls, also die Ortsdarstellung des Impulszustandes Impuls- Eigenzustandes). Der Zustand, der den Impuls repräsentiert und durch Anwendung des Impulsoperators den Impuls liefert.
Denn:
In Algebraischer Schreibweise bedeutet dies (inklusive Normierung):
Impulseigenfunktion in Ortsdarstellung
Ortseigenfunktion in Impulsdarstellung (Diese beiden gehen durch komplexe Konjugation ineinander über!) Damit folgt:
Da und vollständige Darstellungen sind, folgt:
analog zur Entwicklung des Vektors nach Basisvektoren (in seinen Koordinaten, mit seinen Koordinaten als Entwicklungskoeffizienten).
Somit folgt jedoch:
- als Vollständigkeits- Relation. Nebenbemerkung: Der Hilbertraum der Zustände hat unendliche Dimension.
Als Grenzwert definiert man den Dirac- Vektor, als Grenzwert einer diskreten Basis:
Eigenschaften der Funktionen, die H aufspannen:
Dual:
Man spricht auch vom " Einschieben einer 1!".
Skalarprodukt:
Norm:
Alle Funktionen im Hilbertraum müssen also insbesondere quadratintegrabel sein. Somit folgt:
Nebenbemerkung: Die Linearität des Vektorraumes garantiert das Superpositionsprinzip für Wellenfunktionen!