Streuamplitude und Streuquerschnitt: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
K Pfeile einfügen, replaced: -> → →
*>SchuBot
K Interpunktion, replaced: ! → ! (6), ( → (
 
Zeile 11: Zeile 11:
Zum Integral der Lippmann- Schwinger Gleichung trägt dann für r→ unendlich der Integrand nur  mit <math>r\acute{\ }<<r</math>
Zum Integral der Lippmann- Schwinger Gleichung trägt dann für r→ unendlich der Integrand nur  mit <math>r\acute{\ }<<r</math>
bei.
bei.
r´ kennzeichnet das Gebiet des Potenzials. Wenn dieses viel kleiner ist und man sich vor allem für die {{FB|Fernfeldlösungen}} interessiert, so kann der Integrand in diesem Fall geschickt genähert werden, was die Integrale lösbar macht. !
r´ kennzeichnet das Gebiet des Potenzials. Wenn dieses viel kleiner ist und man sich vor allem für die {{FB|Fernfeldlösungen}} interessiert, so kann der Integrand in diesem Fall geschickt genähert werden, was die Integrale lösbar macht.!


Wir können also <math>{{\hat{G}}_{+}}(\bar{r}-\bar{r}\acute{\ })=-\frac{{{e}^{ik|\bar{r}-\bar{r}\acute{\ }|}}}{4\pi |\bar{r}-\bar{r}\acute{\ }|}</math>
Wir können also <math>{{\hat{G}}_{+}}(\bar{r}-\bar{r}\acute{\ })=-\frac{{{e}^{ik|\bar{r}-\bar{r}\acute{\ }|}}}{4\pi |\bar{r}-\bar{r}\acute{\ }|}</math>
Zeile 24: Zeile 24:




Dabei bezeichnet <math>{{e}^{ik\left( r-\bar{r}\acute{\ }{{{\bar{e}}}_{r}} \right)}}</math> die {{FB|Streuphase}}, die uns die Information über die Richtungsverteilung des Streuprozess liefert !
Dabei bezeichnet <math>{{e}^{ik\left( r-\bar{r}\acute{\ }{{{\bar{e}}}_{r}} \right)}}</math> die {{FB|Streuphase}}, die uns die Information über die Richtungsverteilung des Streuprozess liefert!
:<math>\frac{1}{4\pi r}</math> ist die {{FB|Streuamplitude}}, die sich wie eine Kugelwellenamplitude verhält !
:<math>\frac{1}{4\pi r}</math> ist die {{FB|Streuamplitude}}, die sich wie eine Kugelwellenamplitude verhält!
Dabei wird in der Amplitude der Greenschen Funktion stärker genähert als in der Phase. Dies ist gerechtfertigt, das uns die Streurichtung mehr interessiert als die Streuamplitude!
Dabei wird in der Amplitude der Greenschen Funktion stärker genähert als in der Phase. Dies ist gerechtfertigt, das uns die Streurichtung mehr interessiert als die Streuamplitude!


:<math>{{\hat{G}}_{+}}(\bar{r}-\bar{r}\acute{\ })\cong -\frac{{{e}^{ikr}}}{4\pi r}{{e}^{-ik\bar{r}\acute{\ }{{{\bar{e}}}_{r}}}}</math>
:<math>{{\hat{G}}_{+}}(\bar{r}-\bar{r}\acute{\ })\cong -\frac{{{e}^{ikr}}}{4\pi r}{{e}^{-ik\bar{r}\acute{\ }{{{\bar{e}}}_{r}}}}</math>


Dies ist der für große Abstände genäherte Greensche Operator! ( Da es sich bei dieser Art der " Greenschen Funktion" eigentlich um einen Operator handelt, ist es besser, von einem Greenschen Operator zu sprechen !
Dies ist der für große Abstände genäherte Greensche Operator! (Da es sich bei dieser Art der " Greenschen Funktion" eigentlich um einen Operator handelt, ist es besser, von einem Greenschen Operator zu sprechen!
Das Asymptotische Verhalten der Lippmann- Schwinger- Gleichung für r- > unendlich kann also angegeben  
Das Asymptotische Verhalten der Lippmann- Schwinger- Gleichung für r- > unendlich kann also angegeben  
werden:
werden:
Zeile 45: Zeile 45:
\end{matrix}{{\Psi }^{(+)}}(\bar{r})={{e}^{i\bar{k}\bar{r}}}+f({{\bar{e}}_{r}})\frac{{{e}^{ikr}}}{r}</math>
\end{matrix}{{\Psi }^{(+)}}(\bar{r})={{e}^{i\bar{k}\bar{r}}}+f({{\bar{e}}_{r}})\frac{{{e}^{ikr}}}{r}</math>


Dies ist im Limes für r- > unendlich eine exakte Lösung !
Dies ist im Limes für r- > unendlich eine exakte Lösung!


* <math>{{e}^{i\bar{k}\bar{r}}}</math> als '''durchlaufende Welle'''
* <math>{{e}^{i\bar{k}\bar{r}}}</math> als '''durchlaufende Welle'''
Zeile 55: Zeile 55:


Man sieht, dass die Amplitude dieser Streuwelle, eine Kugelwelle, von der Beobachtungsrichtung <math>{{\bar{e}}_{r}}=\frac{{\bar{r}}}{r}</math> abhängt:
Man sieht, dass die Amplitude dieser Streuwelle, eine Kugelwelle, von der Beobachtungsrichtung <math>{{\bar{e}}_{r}}=\frac{{\bar{r}}}{r}</math> abhängt:
Die Streuung ist elastisch !
Die Streuung ist elastisch!





Aktuelle Version vom 12. September 2010, 23:45 Uhr




Voraussetzung limr´V(r¯´)=0 hinreichend rasch!

Ansonsten versagen die Näherungsmethoden, die hier gemacht werden.

das Potenzial muss also eine endliche Reichweite haben. Zum Integral der Lippmann- Schwinger Gleichung trägt dann für r→ unendlich der Integrand nur mit r´<<r bei. r´ kennzeichnet das Gebiet des Potenzials. Wenn dieses viel kleiner ist und man sich vor allem für die Fernfeldlösungen interessiert, so kann der Integrand in diesem Fall geschickt genähert werden, was die Integrale lösbar macht.!

Wir können also G^+(r¯r¯´)=eik|r¯r¯´|4π|r¯r¯´|

für r>> r´ entwickeln:
|r¯r¯´|=(r¯r¯´)2=(r¯22r¯r¯´+r¯´)=r(12r¯r¯´r2+(r´r)2)r(12r¯r¯´r2)rr¯´e¯re¯r=r¯r

Somit

G^+(r¯r¯´)eik(rr¯´e¯r)4πr


Dabei bezeichnet eik(rr¯´e¯r) die Streuphase, die uns die Information über die Richtungsverteilung des Streuprozess liefert!

14πr ist die Streuamplitude, die sich wie eine Kugelwellenamplitude verhält!

Dabei wird in der Amplitude der Greenschen Funktion stärker genähert als in der Phase. Dies ist gerechtfertigt, das uns die Streurichtung mehr interessiert als die Streuamplitude!

G^+(r¯r¯´)eikr4πreikr¯´e¯r

Dies ist der für große Abstände genäherte Greensche Operator! (Da es sich bei dieser Art der " Greenschen Funktion" eigentlich um einen Operator handelt, ist es besser, von einem Greenschen Operator zu sprechen! Das Asymptotische Verhalten der Lippmann- Schwinger- Gleichung für r- > unendlich kann also angegeben werden:

limr>Ψ(+)(r¯)=eik¯r¯2m2eikr4πrd3r´eikr¯´e¯rV(r¯´)Ψ(+)(r¯´)


limr>Ψ(+)(r¯)=eik¯r¯+f(e¯r)eikrr

Dies ist im Limes für r- > unendlich eine exakte Lösung!

Dabei besitzt die auslaufende Kugelwelle die Streuamplitude

f(e¯r)=2m214πd3r´eikr¯´e¯rV(r¯´)Ψ(+)(r¯´)


Man sieht, dass die Amplitude dieser Streuwelle, eine Kugelwelle, von der Beobachtungsrichtung e¯r=r¯r abhängt: Die Streuung ist elastisch!


Wirkungsquerschnitt

Macht Sinn als Definition entsprechend einer Streuung eines Teilchenstrahls an einem undurchdringlichen Streuzentrum.

Dabei ist definiert:

Zahl(gestreut)/sec.Zahl(einfallend)/sec.=σStrahlfla¨che

Strahlfläche:= Fläche, auf die der Strahl trifft


σ: streuende Fläche

Die Definition läßt sich verallgemeinern auf weiche Streuzentren:

Mn spricht dann vom Wirkungsquerschnitt (wie vom Streuquerschnitt)

σ


σ:=Zahl(gestreut)/sec.Zahl(einfallend)/sec./cm2=Zahl(gestreut)/sec.Zahl(einfallend)/sec.cm2

Man muss aber, um Probleme behandeln zu können, den differenziellen Wirkungsquerschnitt betrachten

dσdΩ=Zahl(gestreut)indΩ(e¯r)/sec.Zahl(einfallend)/sec./cm2=Zahl(gestreut)indΩ(e¯r)/sec.Zahl(einfallend)/sec.cm2


dσ=(j¯s)rr2dΩ|j¯e|
dΩ:=sinϑdϑdϕ


Zur einlaufenden Welle:

Ψe(r¯)=eik¯r¯
gehört, wie bereits abgeleitet wurde, die Stromdichte:
j¯e=2im(Ψe*ΨeΨeΨe*)=k¯mΨeΨe*=k¯m|Ψ|2

Zur Streuwelle in Richtung e¯r=r¯r

also: ΨS(r¯)=f(e¯r)eikrr

gehört die Radialkomponente der Stromdichte:

(j¯s)r=2im(ΨS*rΨSΨSrΨS*)=2im|f(e¯r)|2(eikrrreikrreikrrreikrr)(j¯s)r=2im|f(e¯r)|2(eikrr(ikr1r2)eikreikrr(ikr1r2)eikr)=k¯mr2|f(e¯r)|2

Somit ergibt sich die einfache Form des differenziellen Wirkungsquerschnitts:

dσdΩ=|f(e¯r)|2


Und der totale Wirkungsquerschnitt folgt zu

σtot.=dΩ|f(e¯r)|2

Mit der Streuamplitude

f(e¯r)=2m214πd3r´eikr¯´e¯rV(r¯´)Ψ(+)(r¯´)