Stabilität und Langzeitverhalten: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
Einrückungen Mathematik
Keine Bearbeitungszusammenfassung
 
(9 dazwischenliegende Versionen von 7 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:


'''Fixpunkte '''
'''Fixpunkte '''
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
'''des autonomen dynamischen Systems '''
'''des autonomen dynamischen Systems '''


Zeile 11: Zeile 11:




<math>\bar{x}*</math>
:<math>\bar{x}*</math>
  heißt stabil ( auch : Ljapunov- stabil), wenn zu jeder Umgebung U von
  heißt stabil (auch : Ljapunov- stabil), wenn zu jeder Umgebung U von
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
  eine Umgebung V von
  eine Umgebung V von
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
  existiert, so dass:
  existiert, so dass:




<math>\bar{x}\in V\Rightarrow \varphi (\bar{x},t)\in U\quad \forall t\ge 0</math>
:<math>\bar{x}\in V\Rightarrow \varphi (\bar{x},t)\in U\quad \forall t\ge 0</math>




Zeile 25: Zeile 25:




<math>\bar{x}*</math>
:<math>\bar{x}*</math>
  heißt asymptotisch stabil ( auch : Ljapunov- stabil), wenn zu
  heißt asymptotisch stabil (auch : Ljapunov- stabil), wenn zu
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
  eine Umgebung U und eine Umgebung U´ von
  eine Umgebung U und eine Umgebung U´ von
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
  existiert, so dass:
  existiert, so dass:




<math>\varphi (U,{{t}_{2}})\in U\acute{\ }\subset \varphi (U,{{t}_{1}})\in U\quad f\ddot{u}r\ {{t}_{2}}>{{t}_{1}}\ge 0</math> und <math>\begin{matrix}
:<math>\varphi (U,{{t}_{2}})\in U\acute{\ }\subset \varphi (U,{{t}_{1}})\in U\quad f\ddot{u}r\ {{t}_{2}}>{{t}_{1}}\ge 0</math> und <math>\begin{matrix}
   \lim  \\
   \lim  \\
   t\to \infty  \\
   t\to \infty  \\
Zeile 40: Zeile 40:


Das heißt anschaulich: Die Umgebung U schrumpft mit wachsendem t auf
Das heißt anschaulich: Die Umgebung U schrumpft mit wachsendem t auf
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
  zusammen. Das heißt: Phasenraumvolumina schrumpfen.
  zusammen. Das heißt: Phasenraumvolumina schrumpfen.


asymptotisch stabile Fixpunkte treten somit nur in nicht hamiltonschen Systemen ( also bei nicht alleine konservativen Kräften) auf. ( Vergl. Kapitel 4.5: Satz von Liouville)
asymptotisch stabile Fixpunkte treten somit nur in nicht hamiltonschen Systemen (also bei nicht alleine konservativen Kräften) auf. (Vergl. Kapitel 4.5: Satz von Liouville)


'''Def.: '''Ein dynamisches System heißt dissipativ, wenn Phasenraumvolumina schrumpfen.
'''Def.: '''Ein dynamisches System heißt dissipativ, wenn Phasenraumvolumina schrumpfen.
Zeile 50: Zeile 50:


Wenn
Wenn
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
stabil ist, dann hat keiner der Eigenwerte der Jacobimatrix
stabil ist, dann hat keiner der Eigenwerte der Jacobimatrix
<math>{{(DF)}_{\bar{x}*}}</math>
:<math>{{(DF)}_{\bar{x}*}}</math>
einen positiven Realteil
einen positiven Realteil


Zeile 61: Zeile 61:
Alle Eigenwerte haben negative Realteile
Alle Eigenwerte haben negative Realteile


Somit wird die Lösung für die Störung  für unendliche Zeit beliebig klein und divergiert nicht. Imaginärteile sind oszillierend und damit irrelevant für die Stabilität. Sie geben an, in welcher Zeit die Annäherung an den Fixpunkt ( falls vorhanden) erfolgt.
Somit wird die Lösung für die Störung  für unendliche Zeit beliebig klein und divergiert nicht. Imaginärteile sind oszillierend und damit irrelevant für die Stabilität. Sie geben an, in welcher Zeit die Annäherung an den Fixpunkt (falls vorhanden) erfolgt.


'''Beispiel für Instabilität: Fixpunkte b)'''
'''Beispiel für Instabilität: Fixpunkte b)'''
Zeile 70: Zeile 70:




<math>\begin{align}
:<math>\begin{align}
   & \left( \begin{matrix}
   & \left( \begin{matrix}
   \delta {{{\dot{x}}}_{1}}  \\
   \delta {{{\dot{x}}}_{1}}  \\
Zeile 86: Zeile 86:


Eigenwertgleichung:
Eigenwertgleichung:
<math>\det (A-\lambda 1)=0\Rightarrow \left| \left( \begin{matrix}
:<math>\det (A-\lambda 1)=0\Rightarrow \left| \left( \begin{matrix}
   {{a}_{11}}-\lambda  & {{a}_{12}}  \\
   {{a}_{11}}-\lambda  & {{a}_{12}}  \\
   {{a}_{21}} & {{a}_{22}}-\lambda  \\
   {{a}_{21}} & {{a}_{22}}-\lambda  \\
Zeile 93: Zeile 93:


Somit:
Somit:
<math>{{\lambda }_{1/2}}=\frac{1}{2}\left( trA\pm \sqrt{{{\left( trA \right)}^{2}}-4\det A} \right)</math> mit <math>trA=\sum\limits_{i}{\frac{\partial {{F}_{i}}}{\partial {{x}_{i}}}=div\bar{F}}</math>
:<math>{{\lambda }_{1/2}}=\frac{1}{2}\left( trA\pm \sqrt{{{\left( trA \right)}^{2}}-4\det A} \right)</math> mit <math>trA=\sum\limits_{i}{\frac{\partial {{F}_{i}}}{\partial {{x}_{i}}}=div\bar{F}}</math>




<u>'''Fallunterscheidung'''</u>
<u>'''Fallunterscheidung'''</u>


====Stabiler Fokus ( Strudelpunkt)====
====Stabiler Fokus (Strudelpunkt)====


'''detA>0'''
'''detA>0'''
Zeile 105: Zeile 105:




<math>{{\left( trA \right)}^{2}}<4\det A</math>
:<math>{{\left( trA \right)}^{2}}<4\det A</math>






<math>\begin{align}
:<math>\begin{align}
   & {{\lambda }_{1/2}}=-{{\lambda }_{0}}\pm i\omega  \\
   & {{\lambda }_{1/2}}=-{{\lambda }_{0}}\pm i\omega  \\
  & {{\lambda }_{0}},\omega >0 \\
  & {{\lambda }_{0}},\omega >0 \\
Zeile 124: Zeile 124:




<math>{{\left( trA \right)}^{2}}<4\det A</math>
:<math>{{\left( trA \right)}^{2}}<4\det A</math>






<math>\begin{align}
:<math>\begin{align}
   & {{\lambda }_{1/2}}=+{{\lambda }_{0}}\pm i\omega  \\
   & {{\lambda }_{1/2}}=+{{\lambda }_{0}}\pm i\omega  \\
  & {{\lambda }_{0}},\omega >0 \\
  & {{\lambda }_{0}},\omega >0 \\
Zeile 134: Zeile 134:




Dies ist eine entdämpfte Schwingung. Die Phasenraumkurve ist ebenfalls eine elliptische Spirale, die jedoch in positiver Zeitrichtung nach Außen durchlaufen wird.  Damit tr A >0 muss dem System von Außen zugeführt werden ( Beispiel: "negative Reibung"):
Dies ist eine entdämpfte Schwingung. Die Phasenraumkurve ist ebenfalls eine elliptische Spirale, die jedoch in positiver Zeitrichtung nach Außen durchlaufen wird.  Damit tr A >0 muss dem System von Außen zugeführt werden (Beispiel: "negative Reibung"):


====Stabiler Knoten====
====Stabiler Knoten====
Zeile 143: Zeile 143:




<math>{{\left( trA \right)}^{2}}>4\det A</math>
:<math>{{\left( trA \right)}^{2}}>4\det A</math>






<math>\begin{align}
:<math>\begin{align}
   & {{\lambda }_{1/2}}<0 \\
   & {{\lambda }_{1/2}}<0 \\
  & {{\lambda }_{1/2}}\in R \\
  & {{\lambda }_{1/2}}\in R \\
Zeile 163: Zeile 163:




<math>{{\left( trA \right)}^{2}}>4\det A</math>
:<math>{{\left( trA \right)}^{2}}>4\det A</math>






<math>\begin{align}
:<math>\begin{align}
   & {{\lambda }_{1/2}}>0 \\
   & {{\lambda }_{1/2}}>0 \\
  & {{\lambda }_{1/2}}\in R \\
  & {{\lambda }_{1/2}}\in R \\
Zeile 181: Zeile 181:




<math>\begin{align}
:<math>\begin{align}
   & {{\lambda }_{1}}>0 \\
   & {{\lambda }_{1}}>0 \\
  & {{\lambda }_{2}}<0 \\
  & {{\lambda }_{2}}<0 \\
Zeile 203: Zeile 203:




<math>\begin{align}
:<math>\begin{align}
   & {{\lambda }_{1/2}}=\pm i\omega  \\
   & {{\lambda }_{1/2}}=\pm i\omega  \\
  & {{\lambda }_{1/2}}\in I \\
  & {{\lambda }_{1/2}}\in I \\
\end{align}</math>
\end{align}</math>
  Dies kann ZENTRUM sein, also der Mittelpunkt der Phasenraumtrajektorien, die ungedämpfte Schwingungen beschreiben ( energieabhängige, aber unveränderliche Ellipsen).
  Dies kann ZENTRUM sein, also der Mittelpunkt der Phasenraumtrajektorien, die ungedämpfte Schwingungen beschreiben (energieabhängige, aber unveränderliche Ellipsen).


Dieses Zentrum ist stabil, aber nicht asymptotisch stabil !
Dieses Zentrum ist stabil, aber nicht asymptotisch stabil!


Vergleiche: ungedämpfter Oszillator.
Vergleiche: ungedämpfter Oszillator.


Es kann sich aber auch um einen schwach stabilen oder instabilen Fokus handeln ( der dann auch asymptotisch stabil ist)
Es kann sich aber auch um einen schwach stabilen oder instabilen Fokus handeln (der dann auch asymptotisch stabil ist)


* es sind in diesem Fall auch qualitative Änderungen im Verhalten des Flusses möglich ( Bifurkationen = Verzweigungen der Lösungsmannigfaltigkeit)
* es sind in diesem Fall auch qualitative Änderungen im Verhalten des Flusses möglich (Bifurkationen = Verzweigungen der Lösungsmannigfaltigkeit)


'''Speziell: Hamiltonsche Vektorfelder:'''
'''Speziell: Hamiltonsche Vektorfelder:'''




<math>\begin{align}
:<math>\begin{align}
   & \dot{\bar{x}}:=J{{{\bar{H}}}_{,x}} \\
   & \dot{\bar{x}}:=J{{{\bar{H}}}_{,x}} \\
  & \Leftrightarrow {{{\dot{q}}}_{k}}=\frac{\partial H}{\partial {{p}_{k}}},{{{\dot{p}}}_{k}}=-\frac{\partial H}{\partial {{q}_{k}}} \\
  & \Leftrightarrow {{{\dot{q}}}_{k}}=\frac{\partial H}{\partial {{p}_{k}}},{{{\dot{p}}}_{k}}=-\frac{\partial H}{\partial {{q}_{k}}} \\
Zeile 227: Zeile 227:


'''Linearisierung zum Fixpunkt '''
'''Linearisierung zum Fixpunkt '''
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
:
:




<math>\begin{align}
:<math>\begin{align}
   & \delta \bar{x}:=\bar{x}-\bar{x}* \\
   & \delta \bar{x}:=\bar{x}-\bar{x}* \\
  & \delta \dot{\bar{x}}=A\delta \bar{x} \\
  & \delta \dot{\bar{x}}=A\delta \bar{x} \\
Zeile 240: Zeile 240:




<math>\begin{align}
:<math>\begin{align}
   & trA=div\bar{F}=\sum\limits_{k=1}^{f}{\left( \frac{\partial }{\partial {{q}_{k}}}\frac{\partial H}{\partial {{p}_{k}}}-\frac{\partial }{\partial {{p}_{k}}}\frac{\partial H}{\partial {{q}_{k}}} \right)=}0 \\
   & trA=div\bar{F}=\sum\limits_{k=1}^{f}{\left( \frac{\partial }{\partial {{q}_{k}}}\frac{\partial H}{\partial {{p}_{k}}}-\frac{\partial }{\partial {{p}_{k}}}\frac{\partial H}{\partial {{q}_{k}}} \right)=}0 \\
  & trA=0=\sum\limits_{i=1}^{2f}{{{\lambda }_{i}}} \\
  & trA=0=\sum\limits_{i=1}^{2f}{{{\lambda }_{i}}} \\
Zeile 251: Zeile 251:


'''Beweis: '''Asymptotische Stabilität nur, wenn alle
'''Beweis: '''Asymptotische Stabilität nur, wenn alle
<math>\begin{align}
:<math>\begin{align}
   & \operatorname{Re}{{\lambda }_{i}}<0 \\
   & \operatorname{Re}{{\lambda }_{i}}<0 \\
  & \Rightarrow trA=\sum\limits_{i}{\operatorname{Re}{{\lambda }_{i}}}+\sum\limits_{i}{\operatorname{Im}{{\lambda }_{i}}} \\
  & \Rightarrow trA=\sum\limits_{i}{\operatorname{Re}{{\lambda }_{i}}}+\sum\limits_{i}{\operatorname{Im}{{\lambda }_{i}}} \\
Zeile 258: Zeile 258:


aber:
aber:
<math>\sum\limits_{i}{\operatorname{Im}{{\lambda }_{i}}}</math>
:<math>\sum\limits_{i}{\operatorname{Im}{{\lambda }_{i}}}</math>
besteht aus komplex konjugierten Paaren, da die Eigenwertgleichung reell ist !
besteht aus komplex konjugierten Paaren, da die Eigenwertgleichung reell ist!


Somit gilt jedoch
Somit gilt jedoch
<math>trA=\sum\limits_{i}{\operatorname{Re}{{\lambda }_{i}}}<0</math>
:<math>trA=\sum\limits_{i}{\operatorname{Re}{{\lambda }_{i}}}<0</math>,
, was ein Widerspruch zur Voraussetzung für asymptotische Stabilität, mit trA=0
was ein Widerspruch zur Voraussetzung für asymptotische Stabilität, mit trA=0


====Nicht asymptotisch Stabilität====
====Nicht asymptotisch Stabilität====


'''Nicht asymptotische Stabilität nur wenn '''
'''Nicht asymptotische Stabilität nur wenn '''
<math>\operatorname{Re}{{\lambda }_{i}}\le 0</math>
:<math>\operatorname{Re}{{\lambda }_{i}}\le 0</math>,
, also kein
also kein
<math>\operatorname{Re}{{\lambda }_{i}}>0</math>
:<math>\operatorname{Re}{{\lambda }_{i}}>0</math>




Aus genannten Gründen kann dann aber nur
Aus genannten Gründen kann dann aber nur
<math>\operatorname{Re}{{\lambda }_{i}}=0\quad \forall i</math>
:<math>\operatorname{Re}{{\lambda }_{i}}=0\quad \forall i</math>




Also:
Also:
<math>{{\lambda }_{i}}=\pm i{{\omega }_{i}}</math>
:<math>{{\lambda }_{i}}=\pm i{{\omega }_{i}}</math>




Also: Zentrum, reine Oszillationen, keine Dämpfung oder Unterdämpfung
Also: Zentrum, reine Oszillationen, keine Dämpfung oder Unterdämpfung


<u>'''Fall f=1 -> n=2'''</u>
<u>'''Fall f=1 n=2'''</u>


In diesem Fall können die Fixpunkte nur Zentren ( falls det A > 0 ->
In diesem Fall können die Fixpunkte nur Zentren (falls det A > 0
<math>{{\lambda }_{i}}=\pm i{{\omega }_{i}}</math>
:<math>{{\lambda }_{i}}=\pm i{{\omega }_{i}}</math>)
) oder Sattelpunkte
oder Sattelpunkte


( falls detA <0 ->
(falls detA <0
<math>{{\lambda }_{1}}>0,{{\lambda }_{2}}<0,{{\lambda }_{i}}\in R</math>
:<math>{{\lambda }_{1}}>0,{{\lambda }_{2}}<0,{{\lambda }_{i}}\in R</math>)
) sein !
sein!


====Beispiel zur Stabilität====
====Beispiel zur Stabilität====
Zeile 298: Zeile 298:


<u>oBdA: </u>
<u>oBdA: </u>
<math>0<{{J}_{1}}<{{J}_{2}}<{{J}_{3}}</math>
:<math>0<{{J}_{1}}<{{J}_{2}}<{{J}_{3}}</math>




Folgende sind die Eulerschen Gleichungen für
Folgende sind die Eulerschen Gleichungen für
<math>{{\omega }_{i}}</math>
:<math>{{\omega }_{i}}</math>






<math>\begin{align}
:<math>\begin{align}
   & {{J}_{1}}{{{\dot{\omega }}}_{1}}=\left( {{J}_{2}}-{{J}_{3}} \right){{\omega }_{2}}{{\omega }_{3}} \\
   & {{J}_{1}}{{{\dot{\omega }}}_{1}}=\left( {{J}_{2}}-{{J}_{3}} \right){{\omega }_{2}}{{\omega }_{3}} \\
  & {{J}_{2}}{{{\dot{\omega }}}_{2}}=\left( {{J}_{3}}-{{J}_{1}} \right){{\omega }_{3}}{{\omega }_{1}} \\
  & {{J}_{2}}{{{\dot{\omega }}}_{2}}=\left( {{J}_{3}}-{{J}_{1}} \right){{\omega }_{3}}{{\omega }_{1}} \\
Zeile 316: Zeile 316:




<math>\begin{align}
:<math>\begin{align}
   & {{{\dot{\omega }}}_{1}}=-\frac{\left( {{J}_{3}}-{{J}_{2}} \right)}{{{J}_{1}}}{{\omega }_{2}}{{\omega }_{3}}=-{{k}_{1}}{{\omega }_{2}}{{\omega }_{3}} \\
   & {{{\dot{\omega }}}_{1}}=-\frac{\left( {{J}_{3}}-{{J}_{2}} \right)}{{{J}_{1}}}{{\omega }_{2}}{{\omega }_{3}}=-{{k}_{1}}{{\omega }_{2}}{{\omega }_{3}} \\
  & {{{\dot{\omega }}}_{2}}=\frac{\left( {{J}_{3}}-{{J}_{1}} \right)}{{{J}_{2}}}{{\omega }_{3}}{{\omega }_{1}}={{k}_{2}}{{\omega }_{3}}{{\omega }_{1}} \\
  & {{{\dot{\omega }}}_{2}}=\frac{\left( {{J}_{3}}-{{J}_{1}} \right)}{{{J}_{2}}}{{\omega }_{3}}{{\omega }_{1}}={{k}_{2}}{{\omega }_{3}}{{\omega }_{1}} \\
Zeile 326: Zeile 326:




<math>\begin{align}
:<math>\begin{align}
   & \bar{\varpi }{{*}^{(1)}}=\left( \begin{matrix}
   & \bar{\varpi }{{*}^{(1)}}=\left( \begin{matrix}
   \omega  & 0 & 0  \\
   \omega  & 0 & 0  \\
Zeile 344: Zeile 344:




<math>{{\dot{\omega }}_{1}}={{\dot{\omega }}_{2}}={{\dot{\omega }}_{3}}=0</math>
:<math>{{\dot{\omega }}_{1}}={{\dot{\omega }}_{2}}={{\dot{\omega }}_{3}}=0</math>




Zeile 350: Zeile 350:




<math>\left( \begin{matrix}
:<math>\left( \begin{matrix}
   \delta {{{\dot{\omega }}}_{1}}  \\
   \delta {{{\dot{\omega }}}_{1}}  \\
   \delta {{{\dot{\omega }}}_{2}}  \\
   \delta {{{\dot{\omega }}}_{2}}  \\
Zeile 370: Zeile 370:




<math>\begin{align}
:<math>\begin{align}
   & \bar{\varpi }{{*}^{(1)}}:{{\varpi }_{1}}=\varpi ,{{\varpi }_{2}}=0,{{\varpi }_{3}}=0 \\
   & \bar{\varpi }{{*}^{(1)}}:{{\varpi }_{1}}=\varpi ,{{\varpi }_{2}}=0,{{\varpi }_{3}}=0 \\
  & 0=\det (A-\lambda 1)=\left| \begin{matrix}
  & 0=\det (A-\lambda 1)=\left| \begin{matrix}
Zeile 381: Zeile 381:




Der Fixpunkt ist also stabil ( Zentrum)
Der Fixpunkt ist also stabil (Zentrum)




<math>\begin{align}
:<math>\begin{align}
   & \bar{\varpi }{{*}^{(2)}}=\left( \begin{matrix}
   & \bar{\varpi }{{*}^{(2)}}=\left( \begin{matrix}
   0 & \omega  & 0  \\
   0 & \omega  & 0  \\
Zeile 397: Zeile 397:




Der Fixpunkt ist instabil ( Sattelpunkt)
Der Fixpunkt ist instabil (Sattelpunkt)




<math>\begin{align}
:<math>\begin{align}
   & \bar{\varpi }{{*}^{(3)}}=\left( \begin{matrix}
   & \bar{\varpi }{{*}^{(3)}}=\left( \begin{matrix}
   0 & 0 & \omega  \\
   0 & 0 & \omega  \\
Zeile 413: Zeile 413:




* Fixpunkt stabil ( Zentrum)
* Fixpunkt stabil (Zentrum)


Fazit: Bei asymmetrischen Kreiseln ist nur die Rotation um die Achse zum größten und zum kleinsten Trägheitsmoment stabil !
Fazit: Bei asymmetrischen Kreiseln ist nur die Rotation um die Achse zum größten und zum kleinsten Trägheitsmoment stabil!


<u>'''Hamiltonsche Systeme'''</u>
<u>'''Hamiltonsche Systeme'''</u>


Hier folgt aus
Hier folgt aus
<math>trA=div\bar{F}=0</math>
:<math>trA=div\bar{F}=0</math>
der Satz von Liouville ( § 4.5)
der Satz von Liouville (§ 4.5)




<math>\begin{align}
:<math>\begin{align}
   & {{V}_{t}}=\int_{{{U}_{t}}}^{{}}{{{d}^{2f}}x}=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}\det D{{\Phi }_{t}}({{{\bar{x}}}_{0}})=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}\left[ 1+(t-{{t}_{0}})\sum\limits_{i=1}^{2f}{\frac{\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}+...} \right] \\
   & {{V}_{t}}=\int_{{{U}_{t}}}^{{}}{{{d}^{2f}}x}=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}\det D{{\Phi }_{t}}({{{\bar{x}}}_{0}})=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}\left[ 1+(t-{{t}_{0}})\sum\limits_{i=1}^{2f}{\frac{\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}+...} \right] \\
  & \sum\limits_{i=1}^{2f}{\frac{\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}={{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}} \\
  & \sum\limits_{i=1}^{2f}{\frac{\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}={{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}} \\
Zeile 436: Zeile 436:




Das heißt: Die Phasenraumvolumina sind erhalten, der Fluß ist inkompressibel !
Das heißt: Die Phasenraumvolumina sind erhalten, der Fluß ist inkompressibel!


Für '''dissipative '''Systeme gilt für kleine Volumiona, die einen asymptotisch stabilen Fixpunkt
Für '''dissipative '''Systeme gilt für kleine Volumiona, die einen asymptotisch stabilen Fixpunkt
<math>\bar{x}*</math>
:<math>\bar{x}*</math>
  umschließen:
  umschließen:




<math>\begin{align}
:<math>\begin{align}
   & \frac{d{{V}_{t}}}{dt}\approx \int_{{{U}_{t}}}^{{}}{{{d}^{2f}}x}{{\left( div\bar{F} \right)}_{\bar{x}*}}=\Lambda {{V}_{t}} \\
   & \frac{d{{V}_{t}}}{dt}\approx \int_{{{U}_{t}}}^{{}}{{{d}^{2f}}x}{{\left( div\bar{F} \right)}_{\bar{x}*}}=\Lambda {{V}_{t}} \\
  & \Rightarrow V(t)={{e}^{\Lambda t}}{{V}_{0}} \\
  & \Rightarrow V(t)={{e}^{\Lambda t}}{{V}_{0}} \\
Zeile 450: Zeile 450:


Mit der Phasenraumkontraktionsrate
Mit der Phasenraumkontraktionsrate
<math>\Lambda :=div\bar{F}<0</math> wegen <math>div\bar{F}=\sum\limits_{i}^{{}}{\operatorname{Re}{{\lambda }_{i}}}<0</math>
:<math>\Lambda :=div\bar{F}<0</math> wegen <math>div\bar{F}=\sum\limits_{i}^{{}}{\operatorname{Re}{{\lambda }_{i}}}<0</math>,
, da sonst der Fixpunkt nicht stabil wäre ( Voraussetzung).
da sonst der Fixpunkt nicht stabil wäre (Voraussetzung).


Allgemien gilt:
Allgemien gilt:
Zeile 457: Zeile 457:
Def.: Dissipative Systeme sind solche, die Phasenraumvolumina kontrahieren. Asymptotisch stabile Fixpunkte (Knoten und Fokus, jeweils stabil), heißen SENKEN oder ATTRAKTOREN im Phasenraum.
Def.: Dissipative Systeme sind solche, die Phasenraumvolumina kontrahieren. Asymptotisch stabile Fixpunkte (Knoten und Fokus, jeweils stabil), heißen SENKEN oder ATTRAKTOREN im Phasenraum.


====Beispiel für ein dissipatives System: LORENZMODELL ( 1963)====
====Beispiel für ein dissipatives System: LORENZMODELL (1963)====




<math>\begin{align}
:<math>\begin{align}
   & \dot{x}=-\sigma x+\sigma y \\
   & \dot{x}=-\sigma x+\sigma y \\
  & \dot{y}=-zx-xz+rz-y \\
  & \dot{y}=-zx-xz+rz-y \\
Zeile 472: Zeile 472:




<math>\begin{align}
:<math>\begin{align}
   & A=\left( \begin{matrix}
   & A=\left( \begin{matrix}
   -\sigma  & \sigma  & 0  \\
   -\sigma  & \sigma  & 0  \\
Zeile 491: Zeile 491:




Dies ist so zu verstehen, dass sich die Phasenraumkurven, die sich übrigens nie schneiden ! im Raum dieses Attraktors konzentrieren:
Dies ist so zu verstehen, dass sich die Phasenraumkurven, die sich übrigens nie schneiden! im Raum dieses Attraktors konzentrieren:


Insbesondere enden gleich Anfangszustände immer wieder am selben Attraktor.
Insbesondere enden gleich Anfangszustände immer wieder am selben Attraktor.
Zeile 500: Zeile 500:


Sei
Sei
<math>\bar{F}</math>
:<math>\bar{F}</math>
ein vektorfeld auf
ein vektorfeld auf
<math>M={{R}^{n}}</math>
:<math>M={{R}^{n}}</math>.
. Eine abgeschlossene, unter dem Fluß
Eine abgeschlossene, unter dem Fluß
<math>{{\Phi }_{t}}</math> invariante <math>{{\Phi }_{t}}(A)\subseteq A</math>
:<math>{{\Phi }_{t}}</math> invariante <math>{{\Phi }_{t}}(A)\subseteq A</math>,
, unzerlegbare Teilmenge
unzerlegbare Teilmenge
<math>A\subset M</math>
:<math>A\subset M</math>
heißt Attraktor, falls:
heißt Attraktor, falls:


#
#
<math>A\subset {{U}_{0}}</math>
:<math>A\subset {{U}_{0}}</math>
(offene Umgebung von A) mit
(offene Umgebung von A) mit
<math>{{\Phi }_{t}}({{U}_{0}})\subseteq {{U}_{0}}</math>
:<math>{{\Phi }_{t}}({{U}_{0}})\subseteq {{U}_{0}}</math>
(t>0)
(t>0)
#
#
<math>\forall V</math> mit <math>A\subset V\subset {{U}_{0}}</math>
:<math>\forall V</math> mit <math>A\subset V\subset {{U}_{0}}</math>


<math>\exists T>0</math>
:<math>\exists T>0</math>,
, so dass
so dass
<math>{{\Phi }_{t}}({{U}_{0}})\subset V</math>
:<math>{{\Phi }_{t}}({{U}_{0}})\subset V</math>
(t>T)
(t>T)
Das heißt, es existiert ein Attraktorbecken Uo, aus dem der Fluß asymptotisch in den Attraktor A läuft :
Das heißt, es existiert ein Attraktorbecken Uo, aus dem der Fluß asymptotisch in den Attraktor A läuft :


'''Nebenbemerkung: Es kann grundsätzlich mehrere koexistierende Attraktoren auf M geben !'''
'''Nebenbemerkung: Es kann grundsätzlich mehrere koexistierende Attraktoren auf M geben!'''


Ein Attraktor von heißt <font color="#800000">fraktal </font>, wenn er weder eine endliche Anzahl von Punkten, eine stückweise differenzierbare Kurve oder Fläche noch eine Menge, die von einer geschlossenen stückweise differenzierbaren Fläche umgeben wird, darstellt. Ein Attraktor heißt <font color="#800000">seltsam </font>, wenn er chaotisch, fraktal oder beides ist. Die Begriffe chaotisch, fraktal und seltsam werden für kompakte invariante Mengen, die keine Attraktoren sind, analog benutzt. Ein dynamisches System heißt <font color="#800000">chaotisch </font>, wenn es eine kompakte invariante chaotische Menge besitzt.
Ein Attraktor von heißt <font color="#800000">fraktal </font>, wenn er weder eine endliche Anzahl von Punkten, eine stückweise differenzierbare Kurve oder Fläche noch eine Menge, die von einer geschlossenen stückweise differenzierbaren Fläche umgeben wird, darstellt. Ein Attraktor heißt <font color="#800000">seltsam </font>, wenn er chaotisch, fraktal oder beides ist. Die Begriffe chaotisch, fraktal und seltsam werden für kompakte invariante Mengen, die keine Attraktoren sind, analog benutzt. Ein dynamisches System heißt <font color="#800000">chaotisch </font>, wenn es eine kompakte invariante chaotische Menge besitzt.
Zeile 557: Zeile 557:
Mindestdimension des Phasenraumes: 3
Mindestdimension des Phasenraumes: 3


Dimension des Attraktors: 2<D<3 ( fraktaldimensional)
Dimension des Attraktors: 2<D<3 (fraktaldimensional)


chaotische Bewegung im Phasenraum
chaotische Bewegung im Phasenraum

Aktuelle Version vom 8. Juli 2011, 00:31 Uhr




Hier soll eine allgemeinere Definition von Stabilität gegeben werden.

Fixpunkte

x¯*

des autonomen dynamischen Systems

Definition:


x¯*
heißt stabil (auch : Ljapunov- stabil), wenn zu jeder Umgebung U von
x¯*
eine Umgebung V von
x¯*
existiert, so dass:


x¯Vφ(x¯,t)Ut0


Definition:


x¯*
heißt asymptotisch stabil (auch : Ljapunov- stabil), wenn zu
x¯*
eine Umgebung U und eine Umgebung U´ von
x¯*
existiert, so dass:


φ(U,t2)U´φ(U,t1)Ufu¨rt2>t10 und limtφ(x¯,t)=x¯*x¯U


Das heißt anschaulich: Die Umgebung U schrumpft mit wachsendem t auf

x¯*
zusammen. Das heißt: Phasenraumvolumina schrumpfen.

asymptotisch stabile Fixpunkte treten somit nur in nicht hamiltonschen Systemen (also bei nicht alleine konservativen Kräften) auf. (Vergl. Kapitel 4.5: Satz von Liouville)

Def.: Ein dynamisches System heißt dissipativ, wenn Phasenraumvolumina schrumpfen.

Lokales Kriterium für Stabilität

Wenn

x¯*

stabil ist, dann hat keiner der Eigenwerte der Jacobimatrix

(DF)x¯*

einen positiven Realteil

Beispiel: Fixpunkt a) des Pendels mit / ohne Reibung, also der Fixpunkt mit Winkel und Ort =0, x1=x2=0

Hinreichende Bedingung für asymptotische Stabilität:

Alle Eigenwerte haben negative Realteile

Somit wird die Lösung für die Störung für unendliche Zeit beliebig klein und divergiert nicht. Imaginärteile sind oszillierend und damit irrelevant für die Stabilität. Sie geben an, in welcher Zeit die Annäherung an den Fixpunkt (falls vorhanden) erfolgt.

Beispiel für Instabilität: Fixpunkte b)

Allgemeines System mit n=2:

Linearisierung


(δx˙1δx˙2)=A(δx1δx2)(a11a12a21a22):=A


Eigenwertgleichung:

det(Aλ1)=0|(a11λa12a21a22λ)|=(a11λ)(a22λ)a12a21=λ2λtrA+detA=0


Somit:

λ1/2=12(trA±(trA)24detA) mit trA=iFixi=divF¯


Fallunterscheidung

Stabiler Fokus (Strudelpunkt)

detA>0

trA<0


(trA)2<4detA


λ1/2=λ0±iωλ0,ω>0


Dies ist eine gedämpfte Schwingung im Phasenraum. Die Phasenraumkruve ist eine elliptische Spirale:

Instabiler Fokus

detA>0

trA>0


(trA)2<4detA


λ1/2=+λ0±iωλ0,ω>0


Dies ist eine entdämpfte Schwingung. Die Phasenraumkurve ist ebenfalls eine elliptische Spirale, die jedoch in positiver Zeitrichtung nach Außen durchlaufen wird. Damit tr A >0 muss dem System von Außen zugeführt werden (Beispiel: "negative Reibung"):

Stabiler Knoten

detA>0

trA<0


(trA)2>4detA


λ1/2<0λ1/2R


Dies ist ein exponenzieller Zerfall. Fast alle Trajektorien nähern sich dabei entlang des Eigenvektors, der zum betragsmäßig kleineren Eigenwert gehört. Weil hier das "Kriechen" zum Fixpunkt, also der Zerfall langsamer stattfindet:


Instabiler Knoten

detA>0

trA>0


(trA)2>4detA


λ1/2>0λ1/2R


Das System ist exponenziell entdämpft.

Sattelpunkt

detA>0


λ1>0λ2<0λ1/2R


Summary:

Grenze zwischen den 5 Bereichen: entartete Fälle:

  • in diesem Fall versagt die lineare Stabilitätsanalyse völlig. Es ist nötig, höhere Terme der Taylorentwicklung um den Fixpunkt zu betrachten.

Beispiel:

trA=0

detA>0


λ1/2=±iωλ1/2I
Dies kann ZENTRUM sein, also der Mittelpunkt der Phasenraumtrajektorien, die ungedämpfte Schwingungen beschreiben (energieabhängige, aber unveränderliche Ellipsen).

Dieses Zentrum ist stabil, aber nicht asymptotisch stabil!

Vergleiche: ungedämpfter Oszillator.

Es kann sich aber auch um einen schwach stabilen oder instabilen Fokus handeln (der dann auch asymptotisch stabil ist)

  • es sind in diesem Fall auch qualitative Änderungen im Verhalten des Flusses möglich (Bifurkationen = Verzweigungen der Lösungsmannigfaltigkeit)

Speziell: Hamiltonsche Vektorfelder:


x¯˙:=JH¯,xq˙k=Hpk,p˙k=Hqk


Linearisierung zum Fixpunkt

x¯*


δx¯:=x¯x¯*δx¯˙=Aδx¯mit:δx˙i=k=12f(Fixk)x*δxk=k,j=12f(Jij2Hxkxj)δxkj=12f(Jij2Hxkxj)=Aik


trA=divF¯=k=1f(qkHpkpkHqk)=0trA=0=i=12fλi


Möglichkeit zur asymptotischen Stabilität

Wegen trA=0 folgt Keine asymptotische Stabilität möglich.

Beweis: Asymptotische Stabilität nur, wenn alle

λi<0trA=iλi+iλi


aber:

iλi

besteht aus komplex konjugierten Paaren, da die Eigenwertgleichung reell ist!

Somit gilt jedoch

trA=iλi<0,
was ein Widerspruch zur Voraussetzung für asymptotische Stabilität, mit trA=0

Nicht asymptotisch Stabilität

Nicht asymptotische Stabilität nur wenn

λi0,
also kein
λi>0


Aus genannten Gründen kann dann aber nur

λi=0i


Also:

λi=±iωi


Also: Zentrum, reine Oszillationen, keine Dämpfung oder Unterdämpfung

Fall f=1 → n=2

In diesem Fall können die Fixpunkte nur Zentren (falls det A > 0 →

λi=±iωi)
oder Sattelpunkte

(falls detA <0 →

λ1>0,λ2<0,λiR)
sein!

Beispiel zur Stabilität

Der kräftefreie unsymmetrische Kreisel

oBdA:

0<J1<J2<J3


Folgende sind die Eulerschen Gleichungen für

ωi


J1ω˙1=(J2J3)ω2ω3J2ω˙2=(J3J1)ω3ω1J3ω˙3=(J1J2)ω1ω2


Somit:


ω˙1=(J3J2)J1ω2ω3=k1ω2ω3ω˙2=(J3J1)J2ω3ω1=k2ω3ω1ω˙3=(J2J1)J3ω1ω2=k3ω1ω2


Die Fixpunkte seien:


ϖ¯*(1)=(ω00)ϖ¯*(2)=(0ω0)ϖ¯*(3)=(00ω)


Also: Rotation um x1, x2, bzw x3- Achse.

Diese drei Fixpunkte erfüllen die Gleichung:


ω˙1=ω˙2=ω˙3=0


Linearisierung zum Fixpunkt:


(δω˙1δω˙2δω˙3)=A(δω1δω2δω3)=(0k1ω3k1ω2k2ω30k2ω1k3ω2k3ω10)(δω1δω2δω3)


ϖ¯*(1):ϖ1=ϖ,ϖ2=0,ϖ3=00=det(Aλ1)=|λ000λk2ω0k3ωλ|=λ(λ2+k2k3ω2)λ1(1)=0,λ2/3(1)=±iωk2k3


Der Fixpunkt ist also stabil (Zentrum)


ϖ¯*(2)=(0ω0):0=det(Aλ1)=|λ0k1ω0λ0k3ω0λ|=λ(λ2+k1k3ω2)λ1(2)=0,λ2/3(2)=±ωk1k3


Der Fixpunkt ist instabil (Sattelpunkt)


ϖ¯*(3)=(00ω):0=det(Aλ1)=|λk1ω0k2ωλ000λ|=λ(λ2+k1k2ω2)λ1(3)=0,λ2/3(2)=±iωk1k2


  • Fixpunkt stabil (Zentrum)

Fazit: Bei asymmetrischen Kreiseln ist nur die Rotation um die Achse zum größten und zum kleinsten Trägheitsmoment stabil!

Hamiltonsche Systeme

Hier folgt aus

trA=divF¯=0

der Satz von Liouville (§ 4.5)


Vt=Utd2fx=Ut0d2fx0detDΦt(x¯0)=Ut0d2fx0[1+(tt0)i=12fFix0i+...]i=12fFix0i=(divF¯)x¯0Vt=Vt0+(tt0)Ut0d2fx0(divF¯)x¯0+O(tt0)2dVtdt=limt>t0VtVt0(tt0)=Ut0d2fx0(divF¯)x¯0=0(divF¯)x¯0=0


Das heißt: Die Phasenraumvolumina sind erhalten, der Fluß ist inkompressibel!

Für dissipative Systeme gilt für kleine Volumiona, die einen asymptotisch stabilen Fixpunkt

x¯*
umschließen:


dVtdtUtd2fx(divF¯)x¯*=ΛVtV(t)=eΛtV0


Mit der Phasenraumkontraktionsrate

Λ:=divF¯<0 wegen divF¯=iλi<0,
da sonst der Fixpunkt nicht stabil wäre (Voraussetzung).

Allgemien gilt:

Def.: Dissipative Systeme sind solche, die Phasenraumvolumina kontrahieren. Asymptotisch stabile Fixpunkte (Knoten und Fokus, jeweils stabil), heißen SENKEN oder ATTRAKTOREN im Phasenraum.

Beispiel für ein dissipatives System: LORENZMODELL (1963)

x˙=σx+σyy˙=zxxz+rzyz˙=yx+xybz


Dies leitet sich ab aus der Temperatur- und Strömungsverteilung einer inkompressiblen Flüssigkeit: Das Rayleigh - Bénard- System

Linearisierung:


A=(σσ0z1rxyxb)Λ=trA=(σ+1+b)V(t)=e(σ+1+b)tV0t>0


Phasenraumvolumina schrumpfen also monoton!

Das Lorenzmodell produziert weiterhin chaotisch Lösungen:

Der Stereoplot eines numerisch bestimmten Attraktors im Phasenraum liefert folgendes Bild:


Dies ist so zu verstehen, dass sich die Phasenraumkurven, die sich übrigens nie schneiden! im Raum dieses Attraktors konzentrieren:

Insbesondere enden gleich Anfangszustände immer wieder am selben Attraktor.

Das Langzeitverhalten dissipativer Systeme wird durch Attraktoren bestimmt:

Def.:

Sei

F¯

ein vektorfeld auf

M=Rn.
Eine abgeschlossene, unter dem Fluß
Φt invariante Φt(A)A,
unzerlegbare Teilmenge
AM

heißt Attraktor, falls:

AU0

(offene Umgebung von A) mit

Φt(U0)U0

(t>0)

V mit AVU0
T>0,
so dass
Φt(U0)V

(t>T) Das heißt, es existiert ein Attraktorbecken Uo, aus dem der Fluß asymptotisch in den Attraktor A läuft :

Nebenbemerkung: Es kann grundsätzlich mehrere koexistierende Attraktoren auf M geben!

Ein Attraktor von heißt fraktal , wenn er weder eine endliche Anzahl von Punkten, eine stückweise differenzierbare Kurve oder Fläche noch eine Menge, die von einer geschlossenen stückweise differenzierbaren Fläche umgeben wird, darstellt. Ein Attraktor heißt seltsam , wenn er chaotisch, fraktal oder beides ist. Die Begriffe chaotisch, fraktal und seltsam werden für kompakte invariante Mengen, die keine Attraktoren sind, analog benutzt. Ein dynamisches System heißt chaotisch , wenn es eine kompakte invariante chaotische Menge besitzt.

Beispiele für Attraktoren:

Stabiler Fixpunkt:

Mindestdimension des Phasenraumes: 1

Dimension des Attraktors: 0


Stabiler Grenzzyklus:

Mindestdimension des Phasenraumes: 2

Dimension des Attraktors: 1

periodische Bewegung im Phasenraum

Stabiler Torus T²

Mindestdimension des Phasenraumes: 3

Dimension des Attraktors: 2

quasiperiodische Bewegung im Phasenraum


Seltsamer Attraktor

Mindestdimension des Phasenraumes: 3

Dimension des Attraktors: 2<D<3 (fraktaldimensional)

chaotische Bewegung im Phasenraum