Klein Gordon und Relativität: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Keine Bearbeitungszusammenfassung |
*>SchuBot Einrückungen Mathematik |
||
(7 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=2|Prof=Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude> | <noinclude>{{ScriptProf|Kapitel=1|Abschnitt=2|Prof=Prof. Dr. T. Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude> | ||
Einstein (SRT): | Einstein (SRT): | ||
Zeile 7: | Zeile 7: | ||
* gleiche Naturgesetze in gleichförmig gegeneinander bewegten Inertialsystemen | * gleiche Naturgesetze in gleichförmig gegeneinander bewegten Inertialsystemen | ||
* Lichtgeschwindigkeit in allen Inertialsystemen die selbe | * Lichtgeschwindigkeit in allen Inertialsystemen die selbe | ||
{{Beispiel|1=[[Datei:Koordinatensysteme.svg|miniatur| Geschwindigkeit v parallel zu x]] | |||
<u>Beispiel</u>: Ein Lichtpuls im System S wird zur Zeit t=0 ausgesandt und legt nach Zeit t die Distanz <math>\left| r \right|=ct</math> zurück. | |||
{{NumBlk|:|<math>{{r}^{2}}-{{c}^{2}}{{t}^{2}}=0\quad</math>|(1.9) |RawN=.|extra=(in S)}} | |||
Derselbe Lichtpuls beobachtete vom gleichförmig gegen S bewegten System S‘ habe die neuen Koordinaten <math>\left( {\underline{r}}',{t}' \right)</math> in S‘, für die gilt | Derselbe Lichtpuls beobachtete vom gleichförmig gegen S bewegten System S‘ habe die neuen Koordinaten <math>\left( {\underline{r}}',{t}' \right)</math> in S‘, für die gilt | ||
{{NumBlk|:| | {{NumBlk|:|<math>{{{r}'}^{2}}-{{\underbrace{c}_{={c}'}}^{2}}{{{t}'}^{2}}=0\quad</math>|(1.10)|RawN=.|extra=(in S‘)}} | ||
}} | |||
Die Transformation der Koordinaten<ref>Hier ist die Bewegung in x-Richtung also die x-Achse ist parallel zu v und y‘=y, z‘=z </ref> erfolgt nach der {{FB|Lorentz-Transformation}} | |||
Die Transformation der Koordinaten<ref>Hier ist die Bewegung in x-Richtung also die x-Achse ist parallel zu v und y‘=y, z‘=z </ref> erfolgt nach der | |||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\left( \begin{align} | :<math>\left( \begin{align} | ||
& {{x}'} \\ | & {{x}'} \\ | ||
Zeile 51: | Zeile 46: | ||
mit | mit | ||
<math>\beta =\frac{v}{c}\quad \gamma =\frac{1}{\sqrt{1-{{\beta }^{2}}}}</math> | :<math>\beta =\frac{v}{c}\quad \gamma =\frac{1}{\sqrt{1-{{\beta }^{2}}}}</math> | ||
Daraus folgt (mit v | Daraus folgt (mit v → -v) <font color="#3399FF">'''''(CHECK)'''''</FONT> | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\left( \begin{align} | :<math>\left( \begin{align} | ||
& x \\ | & x \\ | ||
Zeile 81: | Zeile 76: | ||
Wir überprüfen die Übereinstimmung mit (1.10) | Wir überprüfen die Übereinstimmung mit (1.10) | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \underline{{{{{x}'}}^{2}}-{{c}^{2}}{{{{t}'}}^{2}}}=\left( \begin{matrix} | & \underline{{{{{x}'}}^{2}}-{{c}^{2}}{{{{t}'}}^{2}}}=\left( \begin{matrix} | ||
Zeile 149: | Zeile 144: | ||
\end{align}</math> | \end{align}</math> | ||
* Unter Lorentz-Transformation bleibt | * Unter Lorentz-Transformation bleibt <math>{{r}^{2}}-{{c}^{2}}{{t}^{2}}</math> invariant. | ||
* Hier nur gezeigt für x-Koordinate; wegen Isotropie des Raumes gültig für beliebiges<math>\underline{r}</math>. | |||
* Insbesondere bleiben die {{FB|Lichtabstände}} <math>{{r}^{2}}-{{c}^{2}}{{t}^{2}}=0</math> invariant. | |||
== Invarianz der Wellengleichungen (Klein-Gordon-Gleichung) unter Lorentz-Transformation (LT) == | == Invarianz der Wellengleichungen (Klein-Gordon-Gleichung) unter Lorentz-Transformation (LT) == | ||
{{FB|Wellengleichung|skalares klassisches Feld}} für skalares klassisches Feld <math>\varphi \left( \underline{x},t \right)</math> | |||
{{NumBlk|:| | {{NumBlk|:| | ||
<math> | in S:<math>\underbrace{\left( {{c}^{-2}}\partial _{t}^{2}-{{\nabla }^{2}} \right)}_{\square }\phi \left( \underline{x},t \right)=0</math> in S':<math>\quad \quad \underbrace{\left( {{c}^{-2}}\partial _{{{t}'}}^{2}-{{{{\nabla }'}}^{2}} \right)}_{{{\square }'}}\phi \left( {\underline{x}}',{t}' \right)=0</math>|(1.13)|RawN=.}} | ||
mit <math>{{\nabla }^{2}}=\partial _{{{x}_{1}}}^{^{2}}+\partial _{{{x}_{2}}}^{^{2}}+...\quad {{{\nabla }'}^{2}}=\partial _{{{{{x}'}}_{1}}}^{^{2}}+\partial _{{{{{x}'}}_{2}}}^{^{2}}+...</math> und selben c. | mit <math>{{\nabla }^{2}}=\partial _{{{x}_{1}}}^{^{2}}+\partial _{{{x}_{2}}}^{^{2}}+...\quad {{{\nabla }'}^{2}}=\partial _{{{{{x}'}}_{1}}}^{^{2}}+\partial _{{{{{x}'}}_{2}}}^{^{2}}+...</math> und selben c. | ||
Zeige dass unter Lorentz-Transformation <math>\square </math>in <math>{\square }'</math>übergeht: Lösungen φ‘ in S‘ haben dann die selbe Form wie Lösungen φ in S. | Zeige dass unter Lorentz-Transformation <math>\square </math>in <math>{\square }'</math>übergeht: Lösungen φ‘ in S‘ haben dann die selbe Form wie Lösungen φ in S. | ||
Hierzu | Hierzu | ||
<math>\begin{align} | :<math>\begin{align} | ||
& {{\partial }_{x}}={{\partial }_{x}}\left( {{x}'} \right){{\partial }_{{{x}'}}}+{{\partial }_{x}}\left( {{t}'} \right){{\partial }_{{{t}'}}}=\gamma \,{{\partial }_{{{x}'}}}-\frac{\gamma \beta }{c}{{\partial }_{{{t}'}}} \\ | & {{\partial }_{x}}={{\partial }_{x}}\left( {{x}'} \right){{\partial }_{{{x}'}}}+{{\partial }_{x}}\left( {{t}'} \right){{\partial }_{{{t}'}}}=\gamma \,{{\partial }_{{{x}'}}}-\frac{\gamma \beta }{c}{{\partial }_{{{t}'}}} \\ | ||
Zeile 194: | Zeile 181: | ||
Sind | Sind {{FB|ebene Wellen|SRT}} (und deren Überlagerungen): | ||
{{NumBlk|:| | {{NumBlk|:| | ||
<math>\Psi \left( \underline{x},t \right)={{e}^{\mp \frac{\mathfrak{i} }{\hbar }\sqrt{{{m}^{2}}{{c}^{4}}+{{p}^{2}}{{c}^{2}}}\,t+i\underline{p}.\underline{x}}}</math> | :<math>\Psi \left( \underline{x},t \right)={{e}^{\mp \frac{\mathfrak{i} }{\hbar }\sqrt{{{m}^{2}}{{c}^{4}}+{{p}^{2}}{{c}^{2}}}\,t+i\underline{p}.\underline{x}}}</math> | ||
: |(1.14)|RawN=.}} | : |(1.14)|RawN=.}} | ||
Zeile 204: | Zeile 191: | ||
mit | mit | ||
<math>\begin{align} | :<math>\begin{align} | ||
& -:\,\text{ negative Energie +}\sqrt{{}} \\ | & -:\,\text{ negative Energie +}\sqrt{{}} \\ | ||
Zeile 211: | Zeile 198: | ||
\end{align}</math> | \end{align}</math> | ||
==Literatur== | |||
<FONT COLOR="#FFBF00">'''LITERATUR: SKRIPT SCHLICKEISER (QMII BOCHUM), LEHRBUCH SCHWINGER (CLASSICAL ELECTRODYNAMICS)'''</FONT> | |||
<references /> | |||
__SHOWFACTBOX__ |
Aktuelle Version vom 12. September 2010, 15:41 Uhr
Quantenmechanikvorlesung von Prof. Dr. T. Brandes
Der Artikel Klein Gordon und Relativität basiert auf der Vorlesungsmitschrift von Moritz Schubotz des 1.Kapitels (Abschnitt 2) der Quantenmechanikvorlesung von Prof. Dr. T. Brandes. |
|}}
Einstein (SRT):
- gleiche Naturgesetze in gleichförmig gegeneinander bewegten Inertialsystemen
- Lichtgeschwindigkeit in allen Inertialsystemen die selbe
Die Transformation der Koordinaten[1] erfolgt nach der Lorentz-Transformation
mit
Daraus folgt (mit v → -v) (CHECK)
Wir überprüfen die Übereinstimmung mit (1.10)
- Unter Lorentz-Transformation bleibt invariant.
- Hier nur gezeigt für x-Koordinate; wegen Isotropie des Raumes gültig für beliebiges.
- Insbesondere bleiben die Lichtabstände invariant.
Invarianz der Wellengleichungen (Klein-Gordon-Gleichung) unter Lorentz-Transformation (LT)
Wellengleichung für skalares klassisches Feld
Zeige dass unter Lorentz-Transformation in übergeht: Lösungen φ‘ in S‘ haben dann die selbe Form wie Lösungen φ in S.
Hierzu
AUFGABE
- d’Alembert-Operator ist invariant unter LT
- Forminvarianz der Wellengleichung und Klein Gordon Gleichung unter LT.
Lösungen der Klein Gordon Gleichung
Sind ebene Wellen (und deren Überlagerungen):
mit
Literatur
LITERATUR: SKRIPT SCHLICKEISER (QMII BOCHUM), LEHRBUCH SCHWINGER (CLASSICAL ELECTRODYNAMICS)
- ↑ Hier ist die Bewegung in x-Richtung also die x-Achse ist parallel zu v und y‘=y, z‘=z