Liouville-von-Neumann-Gleichung: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Keine Bearbeitungszusammenfassung |
*>SchuBot K →Einzelnachweise: Kategorie |
||
(6 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
<math> | <math> | ||
\dot \rho = L \rho = - \frac{i}{\color{Gray}\hbar }\left[ {H,\rho } \right]</math> | \dot \rho = \mathcal{L} \rho = - \frac{i}{\color{Gray}\hbar }\left[ {H,\rho } \right]</math> | ||
mit | mit | ||
Zeile 12: | Zeile 12: | ||
|} | |} | ||
{{Quelle|Schöll, QM 2.5 Teil 1 Seite 77}} | {{Quelle|Schöll, QM 2.5 Teil 1 Seite 77}} | ||
==Herleitung== | |||
[[Schrödingergleichung]] | |||
:<math>{\mathfrak{i}{\partial }_{t}}\Psi (t) =\hat{H}\Psi (t)</math> | |||
Dirac Notation | |||
Ket: | |||
:<math>\begin{align} | |||
& \left| \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right\rangle =\left| \hat{H}\Psi \left( t \right) \right\rangle \\ | |||
& \mathfrak{i}{{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle =\hat{H}\left| \Psi \left( t \right) \right\rangle \Rightarrow {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle =-\mathfrak{i}\hat{H}\left| \Psi \left( t \right) \right\rangle \\ | |||
\end{align}</math> | |||
Bra: | |||
:<math>\begin{align} | |||
& \left\langle \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right|=\left\langle \hat{H}\Psi \left( t \right) \right| \\ | |||
& \text{-}\mathfrak{i}{{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\left\langle \Psi \left( t \right) \right|\hat{H},\,\left( \hat{H}={{{\hat{H}}}^{+}} \right)\Rightarrow {{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\mathfrak{i}\left\langle \Psi \left( t \right) \right|\hat{H} \\ | |||
\end{align}</math> | |||
[[Dichtematrix]] | |||
:<math>\rho =\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|</math> | |||
einsetzen: | |||
:<math>\begin{align} | |||
& \dot{\rho }={{\partial }_{t}}\left( \left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right| \right) \\ | |||
& =\left( {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle \right)\left\langle \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left( {{\partial }_{t}}\left\langle \Psi \left( t \right) \right| \right) \\ | |||
& =-\mathfrak{i}\hat{H}\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|\mathfrak{i}\hat{H} \\ | |||
& =-\mathfrak{i}\left( \hat{H}\rho -\rho \hat{H} \right)\equiv -\mathfrak{i}\left[ \hat{H},\rho \right]=\mathfrak{i}\left[ \rho ,\hat{H} \right] | |||
\end{align}</math> | |||
== Einzelnachweise == | == Einzelnachweise == | ||
<references /> | <references /> | ||
[http://de.wikipedia.org/wiki/Von-Neumann-Gleichung Wikipedia-Eintrag] | [http://de.wikipedia.org/wiki/Von-Neumann-Gleichung Wikipedia-Eintrag] | ||
[[Kategorie:Thermodynamik]] |
Aktuelle Version vom 16. September 2010, 23:13 Uhr
Dichteoperator | |
H | Hamiltonoperator |
Kommutator |
Herleitung
Dirac Notation
Ket:
Bra:
einsetzen:
Einzelnachweise
- ↑ Schöll, QM 2.5 Teil 1 Seite 77,