|
|
(60 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
| ==MathTEST==
| | Im PhysikWiki findet man |
| Google:
| |
| <m>\sin^2(x)+\cos(x)^2+e^{i \pi}=0</m>
| |
|
| |
|
| | *[[Spezial:BrowseData/Theoretische_Physik|Artikel zur theoretischen Physik]] |
|
| |
|
| Mediawiki-Math:
| | *[[Spezial:BrowseData/Klausuraufgabe|Klausuaraufgaben zur Physik für Inegnieuere]] |
| <math>\sin(x)^2+\cos(x)^2+e^{i \pi}=0</math>
| |
|
| |
|
| <math>\begin{align}
| | *sowie eine Übersicht über die [[Weihnachtsübung_zur_Allgemeinen_Relativitätstheorie_II|ART]]. |
| & \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t) \\
| |
| & \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\
| |
| & \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\
| |
| & =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi \\
| |
| & \left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\
| |
| & \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right]
| |
| \end{align}</math>
| |
|
| |
|
| <m>
| | FP-Protokolle sowie Materialien zu den Tutorien Physik für Ingenieure findet man unter |
| \begin{align}
| |
| & \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t) \\
| |
| & \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\
| |
| & \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\
| |
| & =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi \\
| |
| & \left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\
| |
| & \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right] \\
| |
| \end{align}</m>
| |
|
| |
|
| | [http://www.physikerwelt.de physikerwelt.de]. |
|
| |
|
| <math>\underline{b}</math>
| | Das PhysikWiki ist ein [http://www.MediaBotz.de MediaBotz] Projekt. |
|
| |
|
| | | Jetzt neu: [[Kernphysik_Einleitung|Kernphysik]] |
| <math>\begin{align}a&+b\\\\c&+d\end{align}</math>
| |
| | |
| | |
| <math>\text{Magnetfeld}\quad </math>
| |
| | |
| <math>\underline{\nabla }</math>
| |
| <math>c+c*c^2+c+2c+8+ \cos^2x+y</math>
| |
| | |
| <math>
| |
| \begin{align} \text{Magnetfeld}
| |
| \quad \underline{B}&=\underline{\nabla }\times \underline{A} \\ \text{elektrisches Feld}\quad \underline{E}&=-\underline{\nabla }\phi -\frac{1}{c}{{\partial }_{t}}\underline{A} \\ \text{what about spaces} \end{align}
| |
| </math>
| |
Im PhysikWiki findet man
- sowie eine Übersicht über die ART.
FP-Protokolle sowie Materialien zu den Tutorien Physik für Ingenieure findet man unter
physikerwelt.de.
Das PhysikWiki ist ein MediaBotz Projekt.
Jetzt neu: Kernphysik