Maxwell-Gleichungen: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Keine Bearbeitungszusammenfassung |
*>SchuBot Mathematik einrücken |
||
Zeile 1: | Zeile 1: | ||
<math>{{F}^{\alpha }}{{^{\beta }}_{,\beta }}={{\mu }_{0}}{{j}^{\alpha }}</math> | :<math>{{F}^{\alpha }}{{^{\beta }}_{,\beta }}={{\mu }_{0}}{{j}^{\alpha }}</math> | ||
<math>{{F}_{\left\langle \alpha \beta \gamma \right\rangle }}=0</math> | :<math>{{F}_{\left\langle \alpha \beta \gamma \right\rangle }}=0</math> | ||
<math>{{F}^{\mu }}^{\nu }={{A}^{\left[ \mu ,\nu \right]}}</math> | :<math>{{F}^{\mu }}^{\nu }={{A}^{\left[ \mu ,\nu \right]}}</math> | ||
<math>E=\frac{1}{c}{{E}_{real}}</math> | :<math>E=\frac{1}{c}{{E}_{real}}</math> | ||
<math>{{A}^{\mu }}=\left( \phi ,\vec{A} \right)</math> | :<math>{{A}^{\mu }}=\left( \phi ,\vec{A} \right)</math> | ||
<math>{{j}^{\mu }}=\left( c\rho ,\vec{j} \right)</math> | :<math>{{j}^{\mu }}=\left( c\rho ,\vec{j} \right)</math> | ||
<math>{{F}^{\mu }}^{\nu }=\left( \begin{matrix} | :<math>{{F}^{\mu }}^{\nu }=\left( \begin{matrix} | ||
{} & -{{E}_{1}} & -{{E}_{2}} & -{{E}_{3}} \\ | {} & -{{E}_{1}} & -{{E}_{2}} & -{{E}_{3}} \\ | ||
{} & {} & -{{B}_{3}} & {{B}_{2}} \\ | {} & {} & -{{B}_{3}} & {{B}_{2}} \\ |