Kurzer historischer Überblick: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Zeile 76: Zeile 76:
Beschreibung von Stößen zwischen Teilchen bisher nicht diskutiert, einfacher Ansatz sind {{FB|Ratengleichungen}}
Beschreibung von Stößen zwischen Teilchen bisher nicht diskutiert, einfacher Ansatz sind {{FB|Ratengleichungen}}


<math>{{{\dot{\dot{f}}}}_{k}}=-\sum\limits_{l}{\underbrace{{{\Gamma }_{k\to l}}}_{\text{Ausstreurate}}{{f}_{k}}}+\sum\limits_{l}{\underbrace{{{\Gamma }_{l\to k}}}_{\text{Einstreurate}}{{f}_{l}}}</math>
<math>{{{{\dot{f}}}}_{k}}=-\sum\limits_{l}{\underbrace{{{\Gamma }_{k\to l}}}_{\text{Ausstreurate}}{{f}_{k}}}+\sum\limits_{l}{\underbrace{{{\Gamma }_{l\to k}}}_{\text{Einstreurate}}{{f}_{l}}}</math>


Bezetzungszahl (wie viele Teilchen sind im Mittel im Zustand k) beschreibt die '''Dynamik''' aus einem Nichtgleichgewicht in ein Gleichgewichtszustand
Bezetzungszahl (wie viele Teilchen sind im Mittel im Zustand k) beschreibt die '''Dynamik''' aus einem Nichtgleichgewicht in ein Gleichgewichtszustand
==L. von Neumann (1903-1957)==
==L. von Neumann (1903-1957)==
allgemeinster Zugang zur Statistik erfolgt über die von neumann Gleichung ds Statischen Operator <math>\rho</math>
allgemeinster Zugang zur Statistik erfolgt über die von neumann Gleichung ds Statischen Operator <math>\rho</math>

Version vom 29. August 2010, 13:36 Uhr

(Rückwärtsüberblick über die Vorlesung)

A Avangado (1776-1856)

hat als einer der erste so etwas we die idealea Gasgleichung aufgeschrieben pV=nkT

J Losschmidt (1821-1879)

Anschätzung zur Zahl Moleküle in typischem makroskopischem Volumen von 1023 Teilchen

J.C. Maywell (1831-1879)

berechnet erstmalig die Geschwidgkeitsverteilung des Teilchen in ein em idealn Gas


w(v)Wahrscheinlichkeit beim Reingreifen in einGas ein Teilchen mit|v_|=v zu finden =4π(m2πkBT)3/2v2exp(mv22kBT)legt einen AbschneideparameterkTthermischen Energie fest

siehe auch [1]

J.W. Gibbs (1839-1903) u.a.

führen unabhängig von Gas Wahscheinlichkeitsverteilungen recht allgemein ein. {|Ψi} Systemezustände mit Energie \epsilon_i treten mit Wahrscheinlichkeit wi~exp(εikT) auf.

L. Bolzmann (1844-1906) u.a.

verbinden die Entrobie S mit den w_i 's undn führen die Temperaturdefinition über S ein:

S=S(N,E,V)=kBipilnwiT1=ES (E=Energie)

man verbindet die mikroskopiscen Größen ϵi mit T, einer makroskopischen Größe.

(siehe auch http://de.wikipedia.org/wiki/Entropie_(Thermodynamik)#Statistische_Physik)

Quantenstatistik

neben der klassischen Statistik von Maxwell gibt es die Quantenstatistik

  • E. Fermi (1901-1954) --> Fermionen (halbzahliger Spin)
  • N. Bose (1894-1955) --> Bose (ganzzahliger Spin)

Was ist die Wahrscheinlichkeit ein Teilchen im Zustand Ψi mit Energie ϵi zu finden? fεiF/B=1exp(β(εi±1)) mit

So wie Temeperatur Wäremeaustauisch zwischen System und Umgebung charakterisiert, so charakterisert μ den Teilchenaustausch.

Verfeinerungen jenseits eεiβ sind Quanteneffekte.


klassisch
pV=NkTT00,p=0
qantenmechanisch
pVT00 Fermigas


Druck von quantemechanischen Fermionen verschwindet bei T=0 nicht aufgrund von Unschärfe/Pauliprinzip "Fermidruck"

Schwarzkörperstrahlung

es gibt Bosonen ohne Masse \mu=0 z.B. Photonen sind masselose Bosonen M.Planck (1858-1947) leitet 1900 die spektrale Energiedichte eines Strahlers ab

u(ω)=16πc2ωexp(ωkT)1

P.Debey (1884-1966)

wichtige Beiträge durch P.Debey [2] zur Materialphysik Theorie der Flüssigkeiten un der spezifischen Wärme von Festkörpern spezifisce Wäremkapazität


klassisch
CV(T)=3kNT
qantenmechanisch
CV(T0)=V2π25(cs)3T3

L.D. Landau [3] (1908-1966) arbeitet auf dem Gebiet der Transporttheorie/ Ferromagnetismus

Ratengleichung

Beschreibung von Stößen zwischen Teilchen bisher nicht diskutiert, einfacher Ansatz sind Ratengleichungen

f˙k=lΓklAusstreuratefk+lΓlkEinstreuratefl

Bezetzungszahl (wie viele Teilchen sind im Mittel im Zustand k) beschreibt die Dynamik aus einem Nichtgleichgewicht in ein Gleichgewichtszustand

L. von Neumann (1903-1957)

allgemeinster Zugang zur Statistik erfolgt über die von neumann Gleichung ds Statischen Operator ρ

iρ˙=[H,ρ] Dynamik eines Quantensystems in Umgebung ersetzt die Schrödingergleichung.


ρ˙ ist der Wahrscheinlichkeitsoperator

((Vorlesung nimmt den Weg rückwärts))