Hammerwurf: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 10: | Zeile 10: | ||
{{Lösung|Aus {{Quelle|PhIng|1.15}} (mit rechtem Winkel) folgt <math>\omega =\frac{v}{r}</math>. | {{Lösung|Aus {{Quelle|PhIng|1.15}} (mit rechtem Winkel) folgt <math>\omega =\frac{v}{r}</math>. | ||
Die Mathematica Rechnung | Die Mathematica Rechnung | ||
<source lang="mathematica"> | |||
N[r] = .65 + 1.22; | N[r] = .65 + 1.22; | ||
N[m] = 7.26; | N[m] = 7.26; |
Version vom 24. November 2010, 00:32 Uhr
Fakten zur Klausuraufgabe Hammerwurf
Quellen
- Datum: {{#arraymap:WS0910|,|x|x}}
- Aufgabe: {{#arraymap:1|,|x|x}}
- Abschnitt: {{#arraymap:MSW|,|x|x}}
- Punkte: 4
- Tutorium:
coming soon klick the link above
Ein Hammerwerfer mit 65 cm langen Armen benutzt einen Wurfhammer der Länge 1,22m, dessen gesamtes Gewicht von 7,26 kg am äußersten Ende konzentriert ist. Der Hammerwerfer dreht das Gerät am ausgestreckten Arm, bis er loslässt.
a) Mit welcher Winkelgeschwindigkeit muss er den Hammer drehen, damit dieser nach dem Loslassen eine Geschwindigkeit von 30m/s hat?
Lösung
b) Welche Kraft wirkt im Arm des Athleten?
- ↑ Thomsen,C Gumlich, H.E.: Ein Jahr für die Physik. 3. Auflage Berlin: Wissenschaft und Technik Verliag, 2008, Gleichung 1.15