Liouville-von-Neumann-Gleichung: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Zeile 29: | Zeile 29: | ||
<math>\begin{align} | <math>\begin{align} | ||
& \left\langle \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right|=\left\langle \hat{H}\Psi \left( t \right) \right| \\ | & \left\langle \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right|=\left\langle \hat{H}\Psi \left( t \right) \right| \\ | ||
& \text{-}\mathfrak{i}{{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\left\langle \Psi \left( t \right) \right|\hat{H},\,\left( \hat{H}={{{\hat{H}}}^{+}} \right)\Rightarrow {{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\mathfrak{i}\left\langle \Psi \left( t \right) \right|\hat{H} \\ | & \text{-}\mathfrak{i}{{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\left\langle \Psi \left( t \right) \right|\hat{H},\,\left( \hat{H}={{{\hat{H}}}^{+}} \right)\Rightarrow {{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\mathfrak{i}\left\langle \Psi \left( t \right) \right|\hat{H} \\ | ||
\end{align}</math> | \end{align}</math> | ||
Zeile 40: | Zeile 40: | ||
einsetzen: | einsetzen: | ||
<math>\begin{align} | <math>\begin{align} | ||
Zeile 45: | Zeile 46: | ||
& =\left( {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle \right)\left\langle \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left( {{\partial }_{t}}\left\langle \Psi \left( t \right) \right| \right) \\ | & =\left( {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle \right)\left\langle \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left( {{\partial }_{t}}\left\langle \Psi \left( t \right) \right| \right) \\ | ||
& =-\mathfrak{i}\hat{H}\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|\mathfrak{i}\hat{H} \\ | & =-\mathfrak{i}\hat{H}\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|\mathfrak{i}\hat{H} \\ | ||
& =-\mathfrak{i}\left( \hat{H}\rho -\rho \hat{H} \right) | & =-\mathfrak{i}\left( \hat{H}\rho -\rho \hat{H} \right)\equiv -\mathfrak{i}\left[ \hat{H},\rho \right]=\mathfrak{i}\left[ \rho ,\hat{H} \right] | ||
\end{align}</math> | \end{align}</math> | ||
Version vom 6. September 2009, 23:24 Uhr
Dichteoperator | |
H | Hamiltonoperator |
Kommutator |
Herleitung
Dirac Notation
Bra:
einsetzen:
Einzelnachweise
- ↑ Schöll, QM 2.5 Teil 1 Seite 77,