Liouville-von-Neumann-Gleichung: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
*>SchuBot Mathematik einrücken |
|||
Zeile 16: | Zeile 16: | ||
<math>{\mathfrak{i}{\partial }_{t}}\Psi (t) =\hat{H}\Psi (t)</math> | :<math>{\mathfrak{i}{\partial }_{t}}\Psi (t) =\hat{H}\Psi (t)</math> | ||
Dirac Notation | Dirac Notation | ||
Ket: | Ket: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \left| \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right\rangle =\left| \hat{H}\Psi \left( t \right) \right\rangle \\ | & \left| \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right\rangle =\left| \hat{H}\Psi \left( t \right) \right\rangle \\ | ||
& \mathfrak{i}{{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle =\hat{H}\left| \Psi \left( t \right) \right\rangle \Rightarrow {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle =-\mathfrak{i}\hat{H}\left| \Psi \left( t \right) \right\rangle \\ | & \mathfrak{i}{{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle =\hat{H}\left| \Psi \left( t \right) \right\rangle \Rightarrow {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle =-\mathfrak{i}\hat{H}\left| \Psi \left( t \right) \right\rangle \\ | ||
Zeile 28: | Zeile 28: | ||
Bra: | Bra: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \left\langle \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right|=\left\langle \hat{H}\Psi \left( t \right) \right| \\ | & \left\langle \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right|=\left\langle \hat{H}\Psi \left( t \right) \right| \\ | ||
& \text{-}\mathfrak{i}{{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\left\langle \Psi \left( t \right) \right|\hat{H},\,\left( \hat{H}={{{\hat{H}}}^{+}} \right)\Rightarrow {{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\mathfrak{i}\left\langle \Psi \left( t \right) \right|\hat{H} \\ | & \text{-}\mathfrak{i}{{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\left\langle \Psi \left( t \right) \right|\hat{H},\,\left( \hat{H}={{{\hat{H}}}^{+}} \right)\Rightarrow {{\partial }_{t}}\left\langle \Psi \left( t \right) \right|=\mathfrak{i}\left\langle \Psi \left( t \right) \right|\hat{H} \\ | ||
Zeile 37: | Zeile 37: | ||
[[Dichtematrix]] | [[Dichtematrix]] | ||
<math>\rho =\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|</math> | :<math>\rho =\left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right|</math> | ||
einsetzen: | einsetzen: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& \dot{\rho }={{\partial }_{t}}\left( \left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right| \right) \\ | & \dot{\rho }={{\partial }_{t}}\left( \left| \Psi \left( t \right) \right\rangle \left\langle \Psi \left( t \right) \right| \right) \\ | ||
& =\left( {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle \right)\left\langle \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left( {{\partial }_{t}}\left\langle \Psi \left( t \right) \right| \right) \\ | & =\left( {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle \right)\left\langle \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left( {{\partial }_{t}}\left\langle \Psi \left( t \right) \right| \right) \\ |
Version vom 12. September 2010, 17:35 Uhr
Dichteoperator | |
H | Hamiltonoperator |
Kommutator |
Herleitung
Dirac Notation
Ket:
Bra:
einsetzen:
Einzelnachweise
- ↑ Schöll, QM 2.5 Teil 1 Seite 77,