Hauptseite: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 40: | Zeile 40: | ||
<math> | <math> | ||
\begin{align} \text{Magnetfeld} | \begin{align} \text{Magnetfeld} | ||
\quad \underline{B}&=\underline{\nabla }\times \underline{A} \\ \text{elektrisches Feld}\quad \underline{E}&=-\underline{\nabla }\phi -\frac{1}{c}{{\partial }_{t}}\underline{A} \\ \text{what about spaces | \quad \underline{B}&=\underline{\nabla }\times \underline{A} \\ \text{elektrisches Feld}\quad \underline{E}&=-\underline{\nabla }\phi -\frac{1}{c}{{\partial }_{t}}\underline{A} \\ \text{what about spaces} \end{align} | ||
</math> | </math> |
Version vom 7. April 2012, 14:34 Uhr
MathTEST
Google: <m>\sin^2(x)+\cos(x)^2+e^{i \pi}=0</m>
<m> \begin{align} & \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t) \\ & \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\ & \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\ & =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi \\ & \left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\ & \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right] \\ \end{align}</m>