Hauptseite: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 40: Zeile 40:
<math>
<math>
\begin{align} \text{Magnetfeld}
\begin{align} \text{Magnetfeld}
\quad \underline{B}&=\underline{\nabla }\times \underline{A} \\ \text{elektrisches Feld}\quad \underline{E}&=-\underline{\nabla }\phi -\frac{1}{c}{{\partial }_{t}}\underline{A} \\ \text{what about spaces } \end{align}
\quad \underline{B}&=\underline{\nabla }\times \underline{A} \\ \text{elektrisches Feld}\quad \underline{E}&=-\underline{\nabla }\phi -\frac{1}{c}{{\partial }_{t}}\underline{A} \\ \text{what about spaces} \end{align}
</math>
</math>

Version vom 7. April 2012, 14:34 Uhr

MathTEST

Google: <m>\sin^2(x)+\cos(x)^2+e^{i \pi}=0</m>


Mediawiki-Math: sin(x)2+cos(x)2+eiπ=0

ddtL(r¯,v¯,t)vk=mx¨k+q(tAk(r¯,t)+Ak(r¯,t)xlxlt)=mx¨k+q(t+v¯)Ak(r¯,t)L(r¯,v¯,t)xk=q[xk(v¯A¯)xkΦ]0=ddtL(r¯,v¯,t)vkL(r¯,v¯,t)xk=mx¨k+q(t+v¯)Ak(r¯,t)q[xk(v¯A¯)xkΦ]=mx¨k+qtAk(r¯,t)+q[(v¯)Ak(r¯,t)xk(v¯A¯)]+qxkΦ[(v¯)Ak(r¯,t)xk(v¯A¯)]=[v¯×(×A¯)]k0=mr¯¨+qtA(r¯,t)q[v¯×(×A¯)]+qΦ=mr¯¨+q[tA(r¯,t)+Φ[v¯×(×A¯)]]

<m> \begin{align} & \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t) \\ & \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\ & \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi \right] \\ & =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi \\ & \left[ \left( \bar{v}\cdot \nabla \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\ & \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right] \\ \end{align}</m>


b_


a+bc+d


Magnetfeld

_ c+c*c2+c+2c+8+cos2x+y

MagnetfeldB_=_×A_elektrisches FeldE_=_ϕ1ctA_what about spaces