Bewegungsgleichung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „=Quantenmechanik= vergleich mit fundamentale Poissionklammern <math>\left\{ {{q}_{k}},{{p}_{l}} \right\}={{\delta }_{kl}}</math> <math>\left\{ {{q}_{k}},{{q}…“
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
=Quantenmechanik=
=Quantenmechanik=
vergleich mit [[fundamentale Poissionklammern]]
<math>\left\{ {{q}_{k}},{{p}_{l}} \right\}={{\delta }_{kl}}</math>


<math>\left\{ {{q}_{k}},{{q}_{l}} \right\}=\left\{ {{p}_{k}},{{p}_{l}} \right\}=0</math>
<math>\begin{align}
  & \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{A}=\frac{i}{\hbar }\left[ \hat{H},\hat{A} \right]+{{\partial }_{t}}\hat{A} \\  
& \left\langle {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{A}} \right\rangle :={{d}_{t}}\hat{A} 
\end{align}</math>


wird zu
Sei
<math>{{\partial }_{t}}\hat{A}=0</math>


<math>\begin{align}
dann gilt im Heisenbergbild die Heisenbergesche Bewegungsgleichung
  & \left[ {{q}_{k}},{{p}_{l}} \right]=\mathfrak{i} \hbar {{\delta }_{kl}} \\
& \left[ {{q}_{k}},{{q}_{l}} \right]=\left[ {{p}_{k}},{{p}_{l}} \right]=0 
\end{align}</math>


[[Category::Quantenmechanik]]
<math>{{d}_{t}}\hat{A}=\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{A}=\frac{i}{\hbar }\left[ \hat{H},\hat{A} \right]</math>

Version vom 19. Juli 2009, 00:53 Uhr

Quantenmechanik

Fehler beim Parsen (Unbekannte Funktion „\begin{align}“): {\displaystyle \begin{align} & \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{A}=\frac{i}{\hbar }\left[ \hat{H},\hat{A} \right]+{{\partial }_{t}}\hat{A} \\ & \left\langle {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{A}} \right\rangle :={{d}_{t}}\hat{A} \end{align}}

Sei tA^=0

dann gilt im Heisenbergbild die Heisenbergesche Bewegungsgleichung

Fehler beim Parsen (Syntaxfehler): {\displaystyle {{d}_{t}}\hat{A}=\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{A}=\frac{i}{\hbar }\left[ \hat{H},\hat{A} \right]}