Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1340.42 on revision:1340

* Page found: Die Hamilton-Jacobi-Theorie (eq math.1340.42)

(force rerendering)

Occurrences on the following pages:

Hash: 446d16dfd062682d296a8f6a1a9dadd1

TeX (original user input):

\begin{align}
  & {{p}_{j}}=\frac{\partial W}{\partial {{q}_{j}}} \\ 
 & {{Q}_{j}}=\frac{\partial W}{\partial {{P}_{j}}} \\ 
 & \bar{H}=H=E \\ 
 & \Rightarrow {{{\dot{Q}}}_{j}}=\frac{\partial \bar{H}}{\partial {{P}_{j}}}=\frac{\partial E}{\partial {{\alpha }_{j}}}={{\omega }_{j}}\Rightarrow {{Q}_{j}}={{\omega }_{j}}t+{{\beta }_{j}}=\frac{\partial W}{\partial {{P}_{j}}} \\ 
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (26.594 KB / 2.947 KB) :

p j = W q j Q j = W P j H ¯ = H = E Q ˙ j = H ¯ P j = E α j = ω j Q j = ω j t + β j = W P j missing-subexpression subscript 𝑝 𝑗 𝑊 subscript 𝑞 𝑗 missing-subexpression subscript 𝑄 𝑗 𝑊 subscript 𝑃 𝑗 missing-subexpression ¯ 𝐻 𝐻 𝐸 missing-subexpression absent subscript ˙ 𝑄 𝑗 ¯ 𝐻 subscript 𝑃 𝑗 𝐸 subscript 𝛼 𝑗 subscript 𝜔 𝑗 subscript 𝑄 𝑗 subscript 𝜔 𝑗 𝑡 subscript 𝛽 𝑗 𝑊 subscript 𝑃 𝑗 {\displaystyle{\displaystyle\begin{aligned} &\displaystyle{{p}_{j}}=\frac{% \partial W}{\partial{{q}_{j}}}\\ &\displaystyle{{Q}_{j}}=\frac{\partial W}{\partial{{P}_{j}}}\\ &\displaystyle\bar{H}=H=E\\ &\displaystyle\Rightarrow{{{\dot{Q}}}_{j}}=\frac{\partial\bar{H}}{\partial{{P}% _{j}}}=\frac{\partial E}{\partial{{\alpha}_{j}}}={{\omega}_{j}}\Rightarrow{{Q}% _{j}}={{\omega}_{j}}t+{{\beta}_{j}}=\frac{\partial W}{\partial{{P}_{j}}}\\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.045 KB / 425 B) :

pj=WqjQj=WPjH¯=H=EQ˙j=H¯Pj=Eαj=ωjQj=ωjt+βj=WPj

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Die Hamilton-Jacobi-Theorie page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results