Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1515.10 on revision:1515

* Page found: Normalschwingungen (eq math.1515.10)

(force rerendering)

Occurrences on the following pages:

Hash: ad121a07851049a4c7d3f1c3f7f685c5

TeX (original user input):

\begin{align}
  & {{v}_{x}}=\frac{dx}{dt}=\frac{\partial x}{\partial r}\dot{r}+\frac{\partial x}{\partial \vartheta }\dot{\vartheta }+\frac{\partial x}{\partial \phi }\dot{\phi }=\sin \vartheta \cos \phi \dot{r}+r\cos \vartheta \cos \phi \dot{\vartheta }-r\sin \vartheta \sin \phi \dot{\phi } \\
 & {{v}_{y}}=\frac{dy}{dt}=\frac{\partial y}{\partial r}\dot{r}+\frac{\partial y}{\partial \vartheta }\dot{\vartheta }+\frac{\partial y}{\partial \phi }\dot{\phi }=\sin \vartheta \sin \phi \dot{r}+r\cos \vartheta \sin \phi \dot{\vartheta }+r\sin \vartheta \cos \phi \dot{\phi } \\
 & {{v}_{z}}=\frac{dz}{dt}=\frac{\partial z}{\partial r}\dot{r}+\frac{\partial z}{\partial \vartheta }\dot{\vartheta }+\frac{\partial z}{\partial \phi }\dot{\phi }=\cos \vartheta \dot{r}-r\sin \vartheta \dot{\vartheta } \\
 &  \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (66.792 KB / 6.07 KB) :

v x = d x d t = x r r ˙ + x ϑ ϑ ˙ + x ϕ ϕ ˙ = sin ϑ cos ϕ r ˙ + r cos ϑ cos ϕ ϑ ˙ - r sin ϑ sin ϕ ϕ ˙ v y = d y d t = y r r ˙ + y ϑ ϑ ˙ + y ϕ ϕ ˙ = sin ϑ sin ϕ r ˙ + r cos ϑ sin ϕ ϑ ˙ + r sin ϑ cos ϕ ϕ ˙ v z = d z d t = z r r ˙ + z ϑ ϑ ˙ + z ϕ ϕ ˙ = cos ϑ r ˙ - r sin ϑ ϑ ˙ missing-subexpression subscript 𝑣 𝑥 𝑑 𝑥 𝑑 𝑡 𝑥 𝑟 ˙ 𝑟 𝑥 italic-ϑ ˙ italic-ϑ 𝑥 italic-ϕ ˙ italic-ϕ italic-ϑ italic-ϕ ˙ 𝑟 𝑟 italic-ϑ italic-ϕ ˙ italic-ϑ 𝑟 italic-ϑ italic-ϕ ˙ italic-ϕ missing-subexpression subscript 𝑣 𝑦 𝑑 𝑦 𝑑 𝑡 𝑦 𝑟 ˙ 𝑟 𝑦 italic-ϑ ˙ italic-ϑ 𝑦 italic-ϕ ˙ italic-ϕ italic-ϑ italic-ϕ ˙ 𝑟 𝑟 italic-ϑ italic-ϕ ˙ italic-ϑ 𝑟 italic-ϑ italic-ϕ ˙ italic-ϕ missing-subexpression subscript 𝑣 𝑧 𝑑 𝑧 𝑑 𝑡 𝑧 𝑟 ˙ 𝑟 𝑧 italic-ϑ ˙ italic-ϑ 𝑧 italic-ϕ ˙ italic-ϕ italic-ϑ ˙ 𝑟 𝑟 italic-ϑ ˙ italic-ϑ missing-subexpression missing-subexpression {\displaystyle{\displaystyle\begin{aligned} &\displaystyle{{v}_{x}}=\frac{dx}{% dt}=\frac{\partial x}{\partial r}\dot{r}+\frac{\partial x}{\partial\vartheta}% \dot{\vartheta}+\frac{\partial x}{\partial\phi}\dot{\phi}=\sin\vartheta\cos% \phi\dot{r}+r\cos\vartheta\cos\phi\dot{\vartheta}-r\sin\vartheta\sin\phi\dot{% \phi}\\ &\displaystyle{{v}_{y}}=\frac{dy}{dt}=\frac{\partial y}{\partial r}\dot{r}+% \frac{\partial y}{\partial\vartheta}\dot{\vartheta}+\frac{\partial y}{\partial% \phi}\dot{\phi}=\sin\vartheta\sin\phi\dot{r}+r\cos\vartheta\sin\phi\dot{% \vartheta}+r\sin\vartheta\cos\phi\dot{\phi}\\ &\displaystyle{{v}_{z}}=\frac{dz}{dt}=\frac{\partial z}{\partial r}\dot{r}+% \frac{\partial z}{\partial\vartheta}\dot{\vartheta}+\frac{\partial z}{\partial% \phi}\dot{\phi}=\cos\vartheta\dot{r}-r\sin\vartheta\dot{\vartheta}\\ &\\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.513 KB / 496 B) :

vx=dxdt=xrr˙+xϑϑ˙+xϕϕ˙=sinϑcosϕr˙+rcosϑcosϕϑ˙rsinϑsinϕϕ˙vy=dydt=yrr˙+yϑϑ˙+yϕϕ˙=sinϑsinϕr˙+rcosϑsinϕϑ˙+rsinϑcosϕϕ˙vz=dzdt=zrr˙+zϑϑ˙+zϕϕ˙=cosϑr˙rsinϑϑ˙

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Normalschwingungen page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results