Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1515.48 on revision:1515

* Page found: Normalschwingungen (eq math.1515.48)

(force rerendering)

Occurrences on the following pages:

Hash: 7a3a86719661b5b518d0a46476644dca

TeX (original user input):

\begin{align}
  & {{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}} \right)}_{0}}={{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}} \right)}_{0}}=m\frac{g}{l}+k \\
 & \left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}} \right)=mg\frac{\partial }{\partial {{q}_{1}}}(\sin \frac{{{q}_{2}}}{l})-k\frac{\partial }{\partial {{q}_{1}}}({{q}_{1}}-{{q}_{2}})=-k \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (30.857 KB / 3.208 KB) :

( 2 V q 1 2 ) 0 = ( 2 V q 2 2 ) 0 = m g l + k ( 2 V q 1 q 2 ) = m g q 1 ( sin q 2 l ) - k q 1 ( q 1 - q 2 ) = - k missing-subexpression subscript superscript 2 𝑉 superscript subscript 𝑞 1 2 0 subscript superscript 2 𝑉 superscript subscript 𝑞 2 2 0 𝑚 𝑔 𝑙 𝑘 missing-subexpression superscript 2 𝑉 subscript 𝑞 1 subscript 𝑞 2 𝑚 𝑔 subscript 𝑞 1 subscript 𝑞 2 𝑙 𝑘 subscript 𝑞 1 subscript 𝑞 1 subscript 𝑞 2 𝑘 {\displaystyle{\displaystyle\begin{aligned} &\displaystyle{{\left(\frac{{{% \partial}^{2}}V}{\partial{{q}_{1}}^{2}}\right)}_{0}}={{\left(\frac{{{\partial}% ^{2}}V}{\partial{{q}_{2}}^{2}}\right)}_{0}}=m\frac{g}{l}+k\\ &\displaystyle\left(\frac{{{\partial}^{2}}V}{\partial{{q}_{1}}\partial{{q}_{2}% }}\right)=mg\frac{\partial}{\partial{{q}_{1}}}(\sin\frac{{{q}_{2}}}{l})-k\frac% {\partial}{\partial{{q}_{1}}}({{q}_{1}}-{{q}_{2}})=-k\\ \end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.509 KB / 487 B) :

(2Vq12)0=(2Vq22)0=mgl+k(2Vq1q2)=mgq1(sinq2l)kq1(q1q2)=k

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Normalschwingungen page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results