Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1619.37 on revision:1619

* Page found: Zustandsvektoren im Hilbertraum (eq math.1619.37)

(force rerendering)

Occurrences on the following pages:

Hash: 0cc94008a8f745a080d37823af71b14b

TeX (original user input):

\alpha \left( \left| {{\Psi }_{1}} \right\rangle +\left| {{\Psi }_{2}} \right\rangle  \right)=\alpha \left| {{\Psi }_{1}} \right\rangle +\alpha \left| {{\Psi }_{2}} \right\rangle \forall \alpha \in C

TeX (checked):

\alpha \left(\left|{{\Psi }_{1}}\right\rangle +\left|{{\Psi }_{2}}\right\rangle \right)=\alpha \left|{{\Psi }_{1}}\right\rangle +\alpha \left|{{\Psi }_{2}}\right\rangle \forall \alpha \in C

LaTeXML (experimentell; verwendet MathML) rendering

MathML (8.657 KB / 1.317 KB) :

α ( | Ψ 1 + | Ψ 2 ) = α | Ψ 1 + α | Ψ 2 α C 𝛼 ket subscript Ψ 1 ket subscript Ψ 2 𝛼 ket subscript Ψ 1 𝛼 ket subscript Ψ 2 for-all 𝛼 𝐶 {\displaystyle{\displaystyle\alpha\left(\left|{{\Psi}_{1}}\right\rangle+\left|% {{\Psi}_{2}}\right\rangle\right)=\alpha\left|{{\Psi}_{1}}\right\rangle+\alpha% \left|{{\Psi}_{2}}\right\rangle\forall\alpha\in C}}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\displaystyle\alpha\left(\left|{{\Psi}_{1}}\right\rangle+\left|%&#10;{{\Psi}_{2}}\right\rangle\right)=\alpha\left|{{\Psi}_{1}}\right\rangle+\alpha%&#10;\left|{{\Psi}_{2}}\right\rangle\forall\alpha\in C}}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.29" xref="p1.1.m1.1.29.cmml">
      <mrow id="p1.1.m1.1.29.2" xref="p1.1.m1.1.29.2.cmml">
        <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">α</mi>
        <mo id="p1.1.m1.1.29.2.1" xref="p1.1.m1.1.29.2.1.cmml"></mo>
        <mrow id="p1.1.m1.1.29.2.2" xref="p1.1.m1.1.29.2.2.2.cmml">
          <mo id="p1.1.m1.1.2" xref="p1.1.m1.1.29.2.2.2.cmml">(</mo>
          <mrow id="p1.1.m1.1.29.2.2.2" xref="p1.1.m1.1.29.2.2.2.cmml">
            <mrow id="p1.1.m1.1.29.2.2.2.1" xref="p1.1.m1.1.29.2.2.2.1.1.cmml">
              <mo fence="true" id="p1.1.m1.1.3" xref="p1.1.m1.1.29.2.2.2.1.1.1.cmml">|</mo>
              <msub id="p1.1.m1.1.29.2.2.2.1.2" xref="p1.1.m1.1.29.2.2.2.1.2.cmml">
                <mi mathvariant="normal" id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">Ψ</mi>
                <mn id="p1.1.m1.1.5.1" xref="p1.1.m1.1.5.1.cmml">1</mn>
              </msub>
              <mo id="p1.1.m1.1.6" xref="p1.1.m1.1.29.2.2.2.1.1.1.cmml"></mo>
            </mrow>
            <mo id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">+</mo>
            <mrow id="p1.1.m1.1.29.2.2.2.2" xref="p1.1.m1.1.29.2.2.2.2.1.cmml">
              <mo fence="true" id="p1.1.m1.1.8" xref="p1.1.m1.1.29.2.2.2.2.1.1.cmml">|</mo>
              <msub id="p1.1.m1.1.29.2.2.2.2.2" xref="p1.1.m1.1.29.2.2.2.2.2.cmml">
                <mi mathvariant="normal" id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml">Ψ</mi>
                <mn id="p1.1.m1.1.10.1" xref="p1.1.m1.1.10.1.cmml">2</mn>
              </msub>
              <mo id="p1.1.m1.1.11" xref="p1.1.m1.1.29.2.2.2.2.1.1.cmml"></mo>
            </mrow>
          </mrow>
          <mo id="p1.1.m1.1.12" xref="p1.1.m1.1.29.2.2.2.cmml">)</mo>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.13" xref="p1.1.m1.1.13.cmml">=</mo>
      <mrow id="p1.1.m1.1.29.3" xref="p1.1.m1.1.29.3.cmml">
        <mrow id="p1.1.m1.1.29.3.1" xref="p1.1.m1.1.29.3.1.cmml">
          <mi id="p1.1.m1.1.14" xref="p1.1.m1.1.14.cmml">α</mi>
          <mo id="p1.1.m1.1.29.3.1.1" xref="p1.1.m1.1.29.3.1.1.cmml"></mo>
          <mrow id="p1.1.m1.1.29.3.1.2" xref="p1.1.m1.1.29.3.1.2.1.cmml">
            <mo fence="true" id="p1.1.m1.1.15" xref="p1.1.m1.1.29.3.1.2.1.1.cmml">|</mo>
            <msub id="p1.1.m1.1.29.3.1.2.2" xref="p1.1.m1.1.29.3.1.2.2.cmml">
              <mi mathvariant="normal" id="p1.1.m1.1.16" xref="p1.1.m1.1.16.cmml">Ψ</mi>
              <mn id="p1.1.m1.1.17.1" xref="p1.1.m1.1.17.1.cmml">1</mn>
            </msub>
            <mo id="p1.1.m1.1.18" xref="p1.1.m1.1.29.3.1.2.1.1.cmml"></mo>
          </mrow>
        </mrow>
        <mo id="p1.1.m1.1.19" xref="p1.1.m1.1.19.cmml">+</mo>
        <mrow id="p1.1.m1.1.29.3.2" xref="p1.1.m1.1.29.3.2.cmml">
          <mi id="p1.1.m1.1.20" xref="p1.1.m1.1.20.cmml">α</mi>
          <mo id="p1.1.m1.1.29.3.2.1" xref="p1.1.m1.1.29.3.2.1.cmml"></mo>
          <mrow id="p1.1.m1.1.29.3.2.2" xref="p1.1.m1.1.29.3.2.2.1.cmml">
            <mo fence="true" id="p1.1.m1.1.21" xref="p1.1.m1.1.29.3.2.2.1.1.cmml">|</mo>
            <msub id="p1.1.m1.1.29.3.2.2.2" xref="p1.1.m1.1.29.3.2.2.2.cmml">
              <mi mathvariant="normal" id="p1.1.m1.1.22" xref="p1.1.m1.1.22.cmml">Ψ</mi>
              <mn id="p1.1.m1.1.23.1" xref="p1.1.m1.1.23.1.cmml">2</mn>
            </msub>
            <mo id="p1.1.m1.1.24" xref="p1.1.m1.1.29.3.2.2.1.1.cmml"></mo>
          </mrow>
          <mo id="p1.1.m1.1.29.3.2.1a" xref="p1.1.m1.1.29.3.2.1.cmml"></mo>
          <mrow id="p1.1.m1.1.29.3.2.3" xref="p1.1.m1.1.29.3.2.3.cmml">
            <mo id="p1.1.m1.1.25" xref="p1.1.m1.1.25.cmml"></mo>
            <mi id="p1.1.m1.1.26" xref="p1.1.m1.1.26.cmml">α</mi>
          </mrow>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.27" xref="p1.1.m1.1.27.cmml"></mo>
      <mi id="p1.1.m1.1.28" xref="p1.1.m1.1.28.cmml">C</mi>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.29.cmml" xref="p1.1.m1.1.29">
        <and id="p1.1.m1.1.29a.cmml" xref="p1.1.m1.1.29"/>
        <apply id="p1.1.m1.1.29b.cmml" xref="p1.1.m1.1.29">
          <eq id="p1.1.m1.1.13.cmml" xref="p1.1.m1.1.13"/>
          <apply id="p1.1.m1.1.29.2.cmml" xref="p1.1.m1.1.29.2">
            <times id="p1.1.m1.1.29.2.1.cmml" xref="p1.1.m1.1.29.2.1"/>
            <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝛼</ci>
            <apply id="p1.1.m1.1.29.2.2.2.cmml" xref="p1.1.m1.1.29.2.2">
              <plus id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7"/>
              <apply id="p1.1.m1.1.29.2.2.2.1.1.cmml" xref="p1.1.m1.1.29.2.2.2.1">
                <csymbol cd="latexml" id="p1.1.m1.1.29.2.2.2.1.1.1.cmml" xref="p1.1.m1.1.3">ket</csymbol>
                <apply id="p1.1.m1.1.29.2.2.2.1.2.cmml" xref="p1.1.m1.1.29.2.2.2.1.2">
                  <csymbol cd="ambiguous" id="p1.1.m1.1.29.2.2.2.1.2.1.cmml" xref="p1.1.m1.1.29.2.2.2.1.2">subscript</csymbol>
                  <ci id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">Ψ</ci>
                  <cn type="integer" id="p1.1.m1.1.5.1.cmml" xref="p1.1.m1.1.5.1">1</cn>
                </apply>
              </apply>
              <apply id="p1.1.m1.1.29.2.2.2.2.1.cmml" xref="p1.1.m1.1.29.2.2.2.2">
                <csymbol cd="latexml" id="p1.1.m1.1.29.2.2.2.2.1.1.cmml" xref="p1.1.m1.1.8">ket</csymbol>
                <apply id="p1.1.m1.1.29.2.2.2.2.2.cmml" xref="p1.1.m1.1.29.2.2.2.2.2">
                  <csymbol cd="ambiguous" id="p1.1.m1.1.29.2.2.2.2.2.1.cmml" xref="p1.1.m1.1.29.2.2.2.2.2">subscript</csymbol>
                  <ci id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9">Ψ</ci>
                  <cn type="integer" id="p1.1.m1.1.10.1.cmml" xref="p1.1.m1.1.10.1">2</cn>
                </apply>
              </apply>
            </apply>
          </apply>
          <apply id="p1.1.m1.1.29.3.cmml" xref="p1.1.m1.1.29.3">
            <plus id="p1.1.m1.1.19.cmml" xref="p1.1.m1.1.19"/>
            <apply id="p1.1.m1.1.29.3.1.cmml" xref="p1.1.m1.1.29.3.1">
              <times id="p1.1.m1.1.29.3.1.1.cmml" xref="p1.1.m1.1.29.3.1.1"/>
              <ci id="p1.1.m1.1.14.cmml" xref="p1.1.m1.1.14">𝛼</ci>
              <apply id="p1.1.m1.1.29.3.1.2.1.cmml" xref="p1.1.m1.1.29.3.1.2">
                <csymbol cd="latexml" id="p1.1.m1.1.29.3.1.2.1.1.cmml" xref="p1.1.m1.1.15">ket</csymbol>
                <apply id="p1.1.m1.1.29.3.1.2.2.cmml" xref="p1.1.m1.1.29.3.1.2.2">
                  <csymbol cd="ambiguous" id="p1.1.m1.1.29.3.1.2.2.1.cmml" xref="p1.1.m1.1.29.3.1.2.2">subscript</csymbol>
                  <ci id="p1.1.m1.1.16.cmml" xref="p1.1.m1.1.16">Ψ</ci>
                  <cn type="integer" id="p1.1.m1.1.17.1.cmml" xref="p1.1.m1.1.17.1">1</cn>
                </apply>
              </apply>
            </apply>
            <apply id="p1.1.m1.1.29.3.2.cmml" xref="p1.1.m1.1.29.3.2">
              <times id="p1.1.m1.1.29.3.2.1.cmml" xref="p1.1.m1.1.29.3.2.1"/>
              <ci id="p1.1.m1.1.20.cmml" xref="p1.1.m1.1.20">𝛼</ci>
              <apply id="p1.1.m1.1.29.3.2.2.1.cmml" xref="p1.1.m1.1.29.3.2.2">
                <csymbol cd="latexml" id="p1.1.m1.1.29.3.2.2.1.1.cmml" xref="p1.1.m1.1.21">ket</csymbol>
                <apply id="p1.1.m1.1.29.3.2.2.2.cmml" xref="p1.1.m1.1.29.3.2.2.2">
                  <csymbol cd="ambiguous" id="p1.1.m1.1.29.3.2.2.2.1.cmml" xref="p1.1.m1.1.29.3.2.2.2">subscript</csymbol>
                  <ci id="p1.1.m1.1.22.cmml" xref="p1.1.m1.1.22">Ψ</ci>
                  <cn type="integer" id="p1.1.m1.1.23.1.cmml" xref="p1.1.m1.1.23.1">2</cn>
                </apply>
              </apply>
              <apply id="p1.1.m1.1.29.3.2.3.cmml" xref="p1.1.m1.1.29.3.2.3">
                <csymbol cd="latexml" id="p1.1.m1.1.25.cmml" xref="p1.1.m1.1.25">for-all</csymbol>
                <ci id="p1.1.m1.1.26.cmml" xref="p1.1.m1.1.26">𝛼</ci>
              </apply>
            </apply>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.29c.cmml" xref="p1.1.m1.1.29">
          <in id="p1.1.m1.1.27.cmml" xref="p1.1.m1.1.27"/>
          <share href="#p1.1.m1.1.29.3.cmml" id="p1.1.m1.1.29d.cmml" xref="p1.1.m1.1.29"/>
          <ci id="p1.1.m1.1.28.cmml" xref="p1.1.m1.1.28">𝐶</ci>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\displaystyle\alpha\left(\left|{{\Psi}_{1}}\right\rangle+\left|%
{{\Psi}_{2}}\right\rangle\right)=\alpha\left|{{\Psi}_{1}}\right\rangle+\alpha%
\left|{{\Psi}_{2}}\right\rangle\forall\alpha\in C}}</annotation>
  </semantics>
</math>

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (1.273 KB / 296 B) :

α(|Ψ1+|Ψ2)=α|Ψ1+α|Ψ2αC
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>&#x03B1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>&#x03B1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mi>&#x03B1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mi mathvariant="normal">&#x2200;</mi><mi>&#x03B1;</mi><mo>&#x2208;</mo><mi>C</mi></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zustandsvektoren im Hilbertraum page

Identifiers

  • α
  • Ψ1
  • Ψ2
  • α
  • Ψ1
  • α
  • Ψ2
  • α
  • C

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results