Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1619.6 on revision:1619

* Page found: Zustandsvektoren im Hilbertraum (eq math.1619.6)

(force rerendering)

Occurrences on the following pages:

Hash: bfc4c91352daad13edb22634d0c8f56d

TeX (original user input):

\begin{align}

& \int_{{{R}^{3}}}^{{}}{{{d}^{3}}x}\Psi (\bar{r}){{e}^{-i\bar{k}\acute{\ }\bar{r}}}=\frac{1}{{{\left( 2\pi  \right)}^{\tfrac{3}{2}}}}\int_{{{R}^{3}}}^{{}}{{{d}^{3}}k\Phi (\bar{k})\int_{{}}^{{}}{{{d}^{3}}r}{{e}^{i\left( \bar{k}-\bar{k}\acute{\ } \right)\bar{r}}}} \\

& \int_{{{R}^{3}}}^{{}}{{{d}^{3}}r}{{e}^{i\left( \bar{k}-\bar{k}\acute{\ } \right)\bar{r}}}={{\left( 2\pi  \right)}^{3}}\delta (\bar{k}-\bar{k}\acute{\ }) \\

& \Rightarrow \frac{1}{{{\left( 2\pi  \right)}^{\tfrac{3}{2}}}}\int_{{{R}^{3}}}^{{}}{{{d}^{3}}k\Phi (\bar{k})\int_{{}}^{{}}{{{d}^{3}}r}{{e}^{i\left( \bar{k}-\bar{k}\acute{\ } \right)\bar{r}}}}=\frac{1}{{{\left( 2\pi  \right)}^{\tfrac{3}{2}}}}\int_{{{R}^{3}}}^{{}}{{{d}^{3}}k\Phi (\bar{k})}{{\left( 2\pi  \right)}^{3}}\delta (\bar{k}-\bar{k}\acute{\ })={{\left( 2\pi  \right)}^{\tfrac{3}{2}}}\Phi (\bar{k}\acute{\ }) \\

& \Rightarrow \Phi (\bar{k})=\frac{1}{{{\left( 2\pi  \right)}^{\tfrac{3}{2}}}}\int_{{{R}^{3}}}^{{}}{{{d}^{3}}x}\Psi (\bar{r}){{e}^{-i\bar{k}\bar{r}}} \\

\end{align}

TeX (checked):

{\begin{aligned}&\int _{{R}^{3}}^{}{{{d}^{3}}x}\Psi ({\bar {r}}){{e}^{-i{\bar {k}}{\acute {\ }}{\bar {r}}}}={\frac {1}{{\left(2\pi \right)}^{\tfrac {3}{2}}}}\int _{{R}^{3}}^{}{{{d}^{3}}k\Phi ({\bar {k}})\int _{}^{}{{{d}^{3}}r}{{e}^{i\left({\bar {k}}-{\bar {k}}{\acute {\ }}\right){\bar {r}}}}}\\&\int _{{R}^{3}}^{}{{{d}^{3}}r}{{e}^{i\left({\bar {k}}-{\bar {k}}{\acute {\ }}\right){\bar {r}}}}={{\left(2\pi \right)}^{3}}\delta ({\bar {k}}-{\bar {k}}{\acute {\ }})\\&\Rightarrow {\frac {1}{{\left(2\pi \right)}^{\tfrac {3}{2}}}}\int _{{R}^{3}}^{}{{{d}^{3}}k\Phi ({\bar {k}})\int _{}^{}{{{d}^{3}}r}{{e}^{i\left({\bar {k}}-{\bar {k}}{\acute {\ }}\right){\bar {r}}}}}={\frac {1}{{\left(2\pi \right)}^{\tfrac {3}{2}}}}\int _{{R}^{3}}^{}{{{d}^{3}}k\Phi ({\bar {k}})}{{\left(2\pi \right)}^{3}}\delta ({\bar {k}}-{\bar {k}}{\acute {\ }})={{\left(2\pi \right)}^{\tfrac {3}{2}}}\Phi ({\bar {k}}{\acute {\ }})\\&\Rightarrow \Phi ({\bar {k}})={\frac {1}{{\left(2\pi \right)}^{\tfrac {3}{2}}}}\int _{{R}^{3}}^{}{{{d}^{3}}x}\Psi ({\bar {r}}){{e}^{-i{\bar {k}}{\bar {r}}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (92.314 KB / 8.717 KB) :

R 3 d 3 x Ψ ( r ¯ ) e - i k ¯ ´ r ¯ = 1 ( 2 π ) 3 2 R 3 d 3 k Φ ( k ¯ ) d 3 r e i ( k ¯ - k ¯ ´ ) r ¯ R 3 d 3 r e i ( k ¯ - k ¯ ´ ) r ¯ = ( 2 π ) 3 δ ( k ¯ - k ¯ ´ ) 1 ( 2 π ) 3 2 R 3 d 3 k Φ ( k ¯ ) d 3 r e i ( k ¯ - k ¯ ´ ) r ¯ = 1 ( 2 π ) 3 2 R 3 d 3 k Φ ( k ¯ ) ( 2 π ) 3 δ ( k ¯ - k ¯ ´ ) = ( 2 π ) 3 2 Φ ( k ¯ ´ ) Φ ( k ¯ ) = 1 ( 2 π ) 3 2 R 3 d 3 x Ψ ( r ¯ ) e - i k ¯ r ¯ absent subscript superscript 𝑅 3 superscript 𝑑 3 𝑥 Ψ ¯ 𝑟 superscript 𝑒 𝑖 ¯ 𝑘 ´ absent ¯ 𝑟 1 superscript 2 𝜋 3 2 subscript superscript 𝑅 3 superscript 𝑑 3 𝑘 Φ ¯ 𝑘 superscript 𝑑 3 𝑟 superscript 𝑒 𝑖 ¯ 𝑘 ¯ 𝑘 ´ absent ¯ 𝑟 absent subscript superscript 𝑅 3 superscript 𝑑 3 𝑟 superscript 𝑒 𝑖 ¯ 𝑘 ¯ 𝑘 ´ absent ¯ 𝑟 superscript 2 𝜋 3 𝛿 ¯ 𝑘 ¯ 𝑘 ´ absent absent absent 1 superscript 2 𝜋 3 2 subscript superscript 𝑅 3 superscript 𝑑 3 𝑘 Φ ¯ 𝑘 superscript 𝑑 3 𝑟 superscript 𝑒 𝑖 ¯ 𝑘 ¯ 𝑘 ´ absent ¯ 𝑟 1 superscript 2 𝜋 3 2 subscript superscript 𝑅 3 superscript 𝑑 3 𝑘 Φ ¯ 𝑘 superscript 2 𝜋 3 𝛿 ¯ 𝑘 ¯ 𝑘 ´ absent superscript 2 𝜋 3 2 Φ ¯ 𝑘 ´ absent absent absent Φ ¯ 𝑘 1 superscript 2 𝜋 3 2 subscript superscript 𝑅 3 superscript 𝑑 3 𝑥 Ψ ¯ 𝑟 superscript 𝑒 𝑖 ¯ 𝑘 ¯ 𝑟 {\displaystyle{\displaystyle\begin{aligned} \par&\displaystyle\int_{{{R}^{3}}}% {{{d}^{3}}x}\Psi(\bar{r}){{e}^{-i\bar{k}\acute{\ }\bar{r}}}=\frac{1}{{{\left(2% \pi\right)}^{\tfrac{3}{2}}}}\int_{{{R}^{3}}}{{{d}^{3}}k\Phi(\bar{k})\int{{{d}^% {3}}r}{{e}^{i\left(\bar{k}-\bar{k}\acute{\ }\right)\bar{r}}}}\\ \par&\displaystyle\int_{{{R}^{3}}}{{{d}^{3}}r}{{e}^{i\left(\bar{k}-\bar{k}% \acute{\ }\right)\bar{r}}}={{\left(2\pi\right)}^{3}}\delta(\bar{k}-\bar{k}% \acute{\ })\\ \par&\displaystyle\Rightarrow\frac{1}{{{\left(2\pi\right)}^{\tfrac{3}{2}}}}% \int_{{{R}^{3}}}{{{d}^{3}}k\Phi(\bar{k})\int{{{d}^{3}}r}{{e}^{i\left(\bar{k}-% \bar{k}\acute{\ }\right)\bar{r}}}}=\frac{1}{{{\left(2\pi\right)}^{\tfrac{3}{2}% }}}\int_{{{R}^{3}}}{{{d}^{3}}k\Phi(\bar{k})}{{\left(2\pi\right)}^{3}}\delta(% \bar{k}-\bar{k}\acute{\ })={{\left(2\pi\right)}^{\tfrac{3}{2}}}\Phi(\bar{k}% \acute{\ })\\ \par&\displaystyle\Rightarrow\Phi(\bar{k})=\frac{1}{{{\left(2\pi\right)}^{% \tfrac{3}{2}}}}\int_{{{R}^{3}}}{{{d}^{3}}x}\Psi(\bar{r}){{e}^{-i\bar{k}\bar{r}% }}\\ \par\end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (11.711 KB / 729 B) :

R3d3xΨ(r¯)eik¯´r¯=1(2π)32R3d3kΦ(k¯)d3rei(k¯k¯´)r¯R3d3rei(k¯k¯´)r¯=(2π)3δ(k¯k¯´)1(2π)32R3d3kΦ(k¯)d3rei(k¯k¯´)r¯=1(2π)32R3d3kΦ(k¯)(2π)3δ(k¯k¯´)=(2π)32Φ(k¯´)Φ(k¯)=1(2π)32R3d3xΨ(r¯)eik¯r¯

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zustandsvektoren im Hilbertraum page

Identifiers

  • R
  • x
  • Ψ
  • r¯
  • e
  • i
  • k¯
  • ´
  • r¯
  • π
  • R
  • k
  • Φ
  • k¯
  • r
  • e
  • i
  • k¯
  • k¯
  • ´
  • r¯
  • R
  • r
  • e
  • i
  • k¯
  • k¯
  • ´
  • r¯
  • π
  • δ
  • k¯
  • k¯
  • ´
  • π
  • R
  • k
  • Φ
  • k¯
  • r
  • e
  • i
  • k¯
  • k¯
  • ´
  • r¯
  • π
  • R
  • k
  • Φ
  • k¯
  • π
  • δ
  • k¯
  • k¯
  • ´
  • π
  • Φ
  • k¯
  • ´
  • Φ
  • k¯
  • π
  • R
  • x
  • Ψ
  • r¯
  • e
  • i
  • k¯
  • r¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results