Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1619.90 on revision:1619

* Page found: Zustandsvektoren im Hilbertraum (eq math.1619.90)

(force rerendering)

Occurrences on the following pages:

Hash: f1c8f09ff48c17e1c23f300759a76a03

TeX (original user input):

\left\langle  {{\Psi }_{1}} | {{\Psi }_{2}} \right\rangle =\int_{{{R}^{3}}}^{{}}{{{d}^{3}}r\left\langle  {{\Psi }_{1}} | {\bar{r}} \right\rangle }\left\langle  {\bar{r}} | {{\Psi }_{2}} \right\rangle =\int_{{{R}^{3}}}^{{}}{{{d}^{3}}r}{{\Psi }_{1}}(\bar{r})*{{\Psi }_{2}}(\bar{r})=\int_{{{R}^{3}}}^{{}}{{{d}^{3}}p}{{\tilde{\Psi }}_{1}}(\bar{p})*{{\tilde{\Psi }}_{2}}(\bar{p})

TeX (checked):

\left\langle {{\Psi }_{1}}|{{\Psi }_{2}}\right\rangle =\int _{{R}^{3}}^{}{{{d}^{3}}r\left\langle {{\Psi }_{1}}|{\bar {r}}\right\rangle }\left\langle {\bar {r}}|{{\Psi }_{2}}\right\rangle =\int _{{R}^{3}}^{}{{{d}^{3}}r}{{\Psi }_{1}}({\bar {r}})*{{\Psi }_{2}}({\bar {r}})=\int _{{R}^{3}}^{}{{{d}^{3}}p}{{\tilde {\Psi }}_{1}}({\bar {p}})*{{\tilde {\Psi }}_{2}}({\bar {p}})

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.507 KB / 421 B) :

Ψ1|Ψ2=R3d3rΨ1|r¯r¯|Ψ2=R3d3rΨ1(r¯)*Ψ2(r¯)=R3d3pΨ~1(p¯)*Ψ~2(p¯)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi></mrow><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>*</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>p</mi></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>*</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zustandsvektoren im Hilbertraum page

Identifiers

  • Ψ1
  • Ψ2
  • R
  • r
  • Ψ1
  • r¯
  • r¯
  • Ψ2
  • R
  • r
  • Ψ1
  • r¯
  • Ψ2
  • r¯
  • R
  • p
  • Ψ~1
  • p¯
  • Ψ~2
  • p¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results