Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1737.20 on revision:1737

* Page found: Induzierte Emission und Absorption von Lichtquanten in Atomen (eq math.1737.20)

(force rerendering)

Occurrences on the following pages:

Hash: 40ff7cd36d0c9a86652e07f8f61c57aa

TeX (original user input):

\begin{align}
& {{W}_{nn0}}=\frac{\pi }{2{{\hbar }^{2}}}\int_{0}^{\infty }{d\left( \hbar \omega  \right)}{{\left( {{{\bar{E}}}_{0}}\left( \omega  \right)\cdot {{{\bar{d}}}_{nn0}} \right)}^{2}}\left\{ \delta ({{E}_{n}}-{{E}_{n0}}-\hbar \omega )+\delta ({{E}_{n}}-{{E}_{n0}}+\hbar \omega ) \right\} \\
& \Rightarrow {{W}_{nn0}}=\frac{\pi }{2{{\hbar }^{2}}}{{\left( {{{\bar{E}}}_{0}}\left( \frac{\left( \left| {{E}_{n}}-{{E}_{n0}} \right| \right)}{\hbar } \right)\cdot {{{\bar{d}}}_{nn0}} \right)}^{2}} \\
& {{{\bar{d}}}_{nn0}}=e\left\langle  n \right|\hat{\bar{r}}\left| {{n}_{0}} \right\rangle  \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.288 KB / 672 B) :

Wnn0=π220d(ω)(E¯0(ω)d¯nn0)2{δ(EnEn0ω)+δ(EnEn0+ω)}Wnn0=π22(E¯0((|EnEn0|))d¯nn0)2d¯nn0=en|r¯^|n0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>W</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x22C5;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>d</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mi>&#x03B4;</mi><mo stretchy="false">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo stretchy="false">)</mo><mo>+</mo><mi>&#x03B4;</mi><mo stretchy="false">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>W</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x22C5;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>d</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>d</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>=</mo><mi>e</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Induzierte Emission und Absorption von Lichtquanten in Atomen page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results