Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2650.6 on revision:2650

* Page found: Klein Gordon und Relativität (eq math.2650.6)

(force rerendering)

Occurrences on the following pages:

Hash: 4f93c2f247a9046b0bb2e1cf06012bb4

TeX (original user input):

\left( \begin{align}

& x \\

& ct \\

\end{align} \right)=\gamma \left( \begin{matrix}

1 & \beta   \\

\beta  & 1  \\

\end{matrix} \right)\left( \begin{align}

& {{x}'} \\

& c{t}' \\

\end{align} \right)

TeX (checked):

\left({\begin{aligned}&x\\&ct\\\end{aligned}}\right)=\gamma \left({\begin{matrix}1&\beta \\\beta &1\\\end{matrix}}\right)\left({\begin{aligned}&{{x}'}\\&c{t}'\\\end{aligned}}\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (9.59 KB / 1.448 KB) :

( x c t ) = γ ( 1 β β 1 ) ( x c t ) absent 𝑥 absent 𝑐 𝑡 𝛾 1 𝛽 𝛽 1 absent absent superscript 𝑥 absent 𝑐 superscript 𝑡 {\displaystyle{\displaystyle\left(\begin{aligned} \par&\displaystyle x\\ \par&\displaystyle ct\\ \par\end{aligned}\right)=\gamma\left(\begin{matrix}\par 1&\beta\\ \par\beta&1\\ \par\end{matrix}\right)\left(\begin{aligned} \par&\displaystyle{{x}^{\prime}}% \\ \par&\displaystyle c{t}^{\prime}\\ \par\end{aligned}\right)}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (1.578 KB / 365 B) :

(xct)=γ(1ββ1)(xct)

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon und Relativität page

Identifiers

  • x
  • c
  • t
  • γ
  • β
  • β
  • x
  • c
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results