Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2653.16 on revision:2653

* Page found: Klein Gordon und Relativität (eq math.2653.16)

(force rerendering)

Occurrences on the following pages:

Hash: aecb86e2b133bc0e51041bd1aaf7c7a6

TeX (original user input):

\begin{align}

& {{\partial }_{x}}={{\partial }_{x}}\left( {{x}'} \right){{\partial }_{{{x}'}}}+{{\partial }_{x}}\left( {{t}'} \right){{\partial }_{{{t}'}}}=\gamma \,{{\partial }_{{{x}'}}}-\frac{\gamma \beta }{c}{{\partial }_{{{t}'}}} \\

& \partial _{x}^{2}={{\partial }_{x}}{{\partial }_{x}}=\left\{ \gamma \,{{\partial }_{{{x}'}}}-\frac{\gamma \beta }{c}{{\partial }_{{{t}'}}} \right\}\left\{ \gamma \,{{\partial }_{{{x}'}}}-\frac{\gamma \beta }{c}{{\partial }_{{{t}'}}} \right\} \\

& \partial _{t}^{2}\,\text{analog} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\partial }_{x}}={{\partial }_{x}}\left({{x}'}\right){{\partial }_{{x}'}}+{{\partial }_{x}}\left({{t}'}\right){{\partial }_{{t}'}}=\gamma \,{{\partial }_{{x}'}}-{\frac {\gamma \beta }{c}}{{\partial }_{{t}'}}\\&\partial _{x}^{2}={{\partial }_{x}}{{\partial }_{x}}=\left\{\gamma \,{{\partial }_{{x}'}}-{\frac {\gamma \beta }{c}}{{\partial }_{{t}'}}\right\}\left\{\gamma \,{{\partial }_{{x}'}}-{\frac {\gamma \beta }{c}}{{\partial }_{{t}'}}\right\}\\&\partial _{t}^{2}\,{\text{analog}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (36.649 KB / 3.79 KB) :

x = x ( x ) x + x ( t ) t = γ x - γ β c t x 2 = x x = { γ x - γ β c t } { γ x - γ β c t } t 2 analog absent subscript 𝑥 subscript 𝑥 superscript 𝑥 subscript superscript 𝑥 subscript 𝑥 superscript 𝑡 subscript superscript 𝑡 𝛾 subscript superscript 𝑥 𝛾 𝛽 𝑐 subscript superscript 𝑡 absent superscript subscript 𝑥 2 subscript 𝑥 subscript 𝑥 𝛾 subscript superscript 𝑥 𝛾 𝛽 𝑐 subscript superscript 𝑡 𝛾 subscript superscript 𝑥 𝛾 𝛽 𝑐 subscript superscript 𝑡 absent superscript subscript 𝑡 2 analog {\displaystyle{\displaystyle\begin{aligned} \par&\displaystyle{{\partial}_{x}}% ={{\partial}_{x}}\left({{x}^{\prime}}\right){{\partial}_{{{x}^{\prime}}}}+{{% \partial}_{x}}\left({{t}^{\prime}}\right){{\partial}_{{{t}^{\prime}}}}=\gamma% \,{{\partial}_{{{x}^{\prime}}}}-\frac{\gamma\beta}{c}{{\partial}_{{{t}^{\prime% }}}}\\ \par&\displaystyle\partial_{x}^{2}={{\partial}_{x}}{{\partial}_{x}}=\left\{% \gamma\,{{\partial}_{{{x}^{\prime}}}}-\frac{\gamma\beta}{c}{{\partial}_{{{t}^{% \prime}}}}\right\}\left\{\gamma\,{{\partial}_{{{x}^{\prime}}}}-\frac{\gamma% \beta}{c}{{\partial}_{{{t}^{\prime}}}}\right\}\\ \par&\displaystyle\partial_{t}^{2}\,\text{analog}\\ \par\end{aligned}}}

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.194 KB / 489 B) :

x=x(x)x+x(t)t=γxγβctx2=xx={γxγβct}{γxγβct}t2analog

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein Gordon und Relativität page

Identifiers

  • x
  • x
  • x
  • x
  • x
  • t
  • t
  • γ
  • x
  • γ
  • β
  • c
  • t
  • x
  • x
  • x
  • γ
  • x
  • γ
  • β
  • c
  • t
  • γ
  • x
  • γ
  • β
  • c
  • t
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results