Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.387.0 on revision:387

* Page found: Riemannscher Krümmungstensor (eq math.387.0)

(force rerendering)

Occurrences on the following pages:

Hash: 20e1c4c8b78cc81ae6ef4d327e1502d1

TeX (original user input):

{R^{\color{Violet}\alpha}} _{ \color{Red}{\color{WildStrawberry}\beta} {\color{Orange}\mu} {\color{Red}{\color{Red}{\color{Red}\nu}}} } = {\partial _{\color{Red}{\color{Orange}\mu}} }\Gamma _{{\color{Red}{\color{WildStrawberry}\beta}} {\color{Red}{\color{Red}{\color{Red}\nu}}} }^{\color{Violet}\alpha}  - {\partial _{{\color{Orange}\mu} {\color{Red}{\color{Red}{\color{Red}\nu}}} }}\Gamma _{{\color{WildStrawberry}\beta} {\color{Orange}\mu} }^{\color{Violet}\alpha}  + \Gamma _{\sigma {\color{Orange}\mu} }^{\color{Violet}\alpha} \Gamma _{{\color{WildStrawberry}\beta} {\color{Red}{\color{Red}\nu}} }^\sigma  - \Gamma _{\sigma {\color{Red}{\color{Red}{\color{Red}\nu}}} }^{\color{Violet}\alpha} \Gamma _{{\color{WildStrawberry}\beta} {\color{Orange}\mu} }^\sigma

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.351 KB / 381 B) :

Rαβμν=μΓβναμνΓβμα+ΓσμαΓβνσΓσναΓβμσ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msub><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow></mstyle><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mstyle><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mstyle></mrow></mstyle></mrow></mstyle></mrow></mrow></msub><mo>=</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mstyle></mrow></mrow></msub><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mstyle></mrow></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msubsup><mo>&#x2212;</mo><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mstyle></mrow></mstyle></mrow></mrow></mrow></msub><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msubsup><mo>+</mo><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msubsup><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msubsup><mo>&#x2212;</mo><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#ED1B23"><mi>&#x03BD;</mi></mstyle></mrow></mstyle></mrow></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#58429B"><mi>&#x03B1;</mi></mstyle></mrow></mrow></msubsup><msubsup><mi mathvariant="normal">&#x0393;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#EE2967"><mi>&#x03B2;</mi></mstyle></mrow><mrow data-mjx-texclass="ORD"><mstyle mathcolor="#F58137"><mi>&#x03BC;</mi></mstyle></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C3;</mi></mrow></msubsup></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Riemannscher Krümmungstensor page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results