Zeitunabhängige Störungsrechnung ohne Entartung
Kein GFDL | Der Artikel Zeitunabhängige Störungsrechnung ohne Entartung basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 5.Kapitels (Abschnitt 3) der Quantenmechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
( Schrödinger)
Betrachte zeitunabhängige Schrödingergleichung:
muss berechnet werden, wobei
durch den ungestörten Hamilton- Operator mit einer kleinen Störung repräsentiert wird.
Die Störung lasse sich als Potenzialstörung darstellen, die mittels des von Null verschiedenen jedoch kleinen Parameters
linear entwickelt werden kann:
( dabei soll die Störung zeitunabhängig sein !)
Das ungestörte Problem schreibt sich:
sollten sich Eigenwerte und Eigenzustände von
entwickeln lassen:
Merke: Die Eigenzustände und die Energieeigenwerte sollten sich entwickeln lassen !
Also:
Die Koeffizienten lassen sich dann in der Ordnung
vergleichen:
f=0
ungestörtes Problem
f=1
1. Näherung
f=2
... → Rekursionsformeln
Die Bestimmung der Energieeigenwerte und Eigenzustände kann erfolgen....
Aus f=1: Störungsrechnung erster Ordnung möglich:
Wir entwickeln nach der ungestörten Basis
ein:
"projiziert" wieder die Korrektur des l- ten Zustand ( seines Eigenwertes und seines zugehörigen Zustandes ) heraus:
Somit haben wir für l=k
die erste Korrektur zum Energieeigenwert gefunden:
ergibt sich die 1. Korrektur zum Eigenvektor:
wird durch Normierung festgelegt:
Da die Summe rechts aber für beliebige Epsilon Null werden muss folgt:
usw.. für jede Klammer nach einer bestimmten, festen Ordnung von
Also für die erste Ordnung:
Fazit:
Wegen
.
Die Festlegung erfolgt durch die Forderung :
Im entartungsfreien Fall (keine Entartung) folgt dann:
(keine Entartung)