Transformationsverhalten der Ströme und Felder

Aus PhysikWiki
Version vom 12. September 2010, 23:24 Uhr von *>SchuBot (Interpunktion, replaced: <→ → ↔, ! → ! (11), ( → ( (3))
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen




Ziel: Ko- / Kontravariante Schreibweise der Elektrodynamik im Vakuum

Grund: Die klassische Elektrodynamik ist bereits eine Lorentz- invariante Theorie!!

Historisch gab die Maxwellsche Elektrodynamik und nicht die Mechanik den Anstoß zur Relativitätstheorie überhaupt!

Ladungserhaltung aus Kontinuitätsgleichung:

divj¯+ρt=jxx+jyy+jzz+cρct=00=ρt+α=13αjα

Somit gewinnen wir aber ebenfalls wieder einen Lorentz- Skalar, nämlich

μjμ=0

in Viererschreibweise. Die Vierer- Stromdichte ist

{jμ}={cρ,j¯}

ebenfalls ein kontravarianter Vierer- Vektor. Er heißt Vierer- Stromdichte. Die Kontinuitätsgleichung ist gleich

μjμ=0

Forderung: Ladungserhaltung soll in allen Inertialsystemen gelten! →

jμ=0

muss sich wie ein Vierervektor transformieren, damit das Skalarprodukt

μjμ=0

Lorentz- invariant ist!:

x0´=γ(x0βx1)t´=γ(tvc2x1)x1´=γ(x1βx0)x1´=γ(x1vt)x2´=x2x3´=x3

Also gilt für Ladungs- und Stromdichten:

j0´=γ(j0βj1)ρ´=γ(ρvc2j1)j1´=γ(j1βj0)j1´=γ(j1vρ)j2´=j2j3´=j3

Merke: Es sollte kein Missverständnis geschehen: Ist ein Vektor in ein Lorentz- invariantes Skalarprodukt verwickelt, so ist es ein Vierervektor. Damit ist klar: Seine Komponenten transfornmieren nach der Lorentz- Trafo. Dadurch aber ist die Trafo für seine Komponenten, die Beispielsweise Ladungs- und Stromdichten sind, gefunden.

4- Potenziale:

Die Potenziale

Φ,A¯

sind in der Lorentz- Eichung

A¯+1c2tϕ=0

Lösungen von

ΔA¯(r¯,t)1c22t2A¯(r¯,t)=μ0j¯#A¯(r¯,t)=μ0j¯#=μμμ0c=1ε0c#A¯(r¯,t)=μ0j¯μμcAα=1ε0cjαα=1,2,3
Δϕ(r¯,t)1c22t2ϕ(r¯,t)=ρε0=μ0c2ρ#ϕ(r¯,t)=ρε0μμϕ=1ε0cj0

Zusammen:

#Φμ=ααΦμ=μ0jμΦ0:=ϕΦi:=cAii=1..3

Da

jμ

Vierervektoren sind (wie Vierervektoren transformieren), muss auch

Φμ

wie ein Vierervektor transformieren. Denn: Der d´Alembert- Operator ist Lorentz- invariant:

αα

lorentz- invariant!:

Φ0´=γ(Φ0βΦ1)bzw.Φ´=γ(ΦvA1)Φ1´=γ(Φ1βΦ0)bzw.A´1=γ(A1vc2Φ),A´2=A2,A´3=A3

Nun: Lorentz- Eichung:

A¯+1c2tϕ=0

Lorentz- Eichung ↔ Lorentz- Invarianz

μΦμ=0

(Gegensatz zur Coulomb- Eichung)

μΦμ=0A¯+1c2tϕ=0

Umeichung:

A¯~=A¯+Fϕ~=ϕtFcA~α=cAα+αcF=cAααcFΦ~0=Φ00cF=Φ00cF

Also:

Φ~μ=ΦμμcF

Felder E und B:

E¯=gradϕtA¯Eα=αϕ1ctcAα=αΦ00Φα=αΦ00Φα
B¯=×A¯cB1=2cA33cA2=2Φ33Φ2=3Φ22Φ3

Die anderen Komponenten gewinnt man durch zyklische Vertauschung:

cB2=1Φ33Φ1cB3=2Φ11Φ2

Diese Gleichungen werden zusammengefasst durch den antisymmetrtischen Feldstärketensor:

{Fμν}={μΦννΦμ}=(01cEx1cEy1cEz1cEx0BzBy1cEyBz0Bx1cEzByBx0)Fμν={μΦννΦμ}=(01cEx1cEy1cEz1cEx0BzBy1cEyBz0Bx1cEzByBx0)Fμν={μΦννΦμ}=(0E1E2E3E10cB3cB2E2cB30cB1E3cB2cB10)

Wegen der Antisymmetrie hat

Fμν

nur 6 unabhängige Komponenten!

Das bedeutet, die Raum- Raum- Komponenten entsprechen

rotA¯=B¯

während die Raum- zeit- Komponenten:

E¯=gradϕtA¯

erfüllen.

Lorentz- Trafo der Felder:

Der Feldstärketensor ist kovariant und transformiert demnach über die inverse Lorentz- Transformation. Das heißt: Für die Transformation in ein in x- Richtung mit konstanter Geschwindigkeit

v¯

bewegtes System K´ gilt:

F´μν=UμλUνκFλκ
Uik=(11β2β1β200β1β211β20000100001)

Damit läßt sich nun das uns unbekannte Transformationsverhalten der Felder

E¯ und rotA¯=B¯

berechnen, die auch kovariant transformieren müssen. Dabei sollte keinesfalls die Summation über die Indices auf der rechten Seite vergessen werden!!

E´1=F´10=U1λU0κFλκ=βγU0κF0κ+γU0κF1κ=(βγ)2F01+γ2F10==γ2(1β2)F10=E1γ2(1β2)=1E´2=F´20=U2λU0κFλκ=U0κF2κ=γF20βγF21=γ(E2vB3)
E´3=F´30=U0κF3κ=γF30βγF31=γ(E3+vB2)
B´1=1cF´32=1cU3λU2κFλκ=1cF32=B1B´2=1cF´13=1cU1λU3κFλκ=1cU1κFκ3=βγcF03+γcF13=γ(B2+vc2E3)
B´3=γ(B3vc2E2)

Zusammenfassung

E1´=E1E2´=11β2(E2vB3)E3´=11β2(E3+vB2)B1´=B1B2´=11β2(B2+vc2E3)B3´=11β2(B3vc2E2)

Elektrische und magnetische Felder werden beim Übergang zwischen verschiedenen Inertialsystemen ineinander transformiert!

Umeichung:

Φ~μ=Φμ+μϕ

Somit:

F~μν=μΦ~ννΦ~μ=μ(Φν+νϕ)ν(Φμ+μϕ)=μΦννΦμ+μνϕνμϕ=Fμν

Homogene Maxwell- Gleichungen

B¯=1B1+2B2+3B3=01F32+2F13+3F21=0

Mit

1=1F32=F231F23+2F31+3F12=0

+ zyklisch in (123)

innere Feldgleichung für E- Feld

×E¯=tB¯
  1. Komponente
2E33E2+tB1=0
0F23+2F30+3F02=0

und zyklisch (023)

zyklische Permutation 1 → 2 → 3 → 1 und mit

Fik=Fki

liefert:

0F13+3F01+1F30=0zyklisch(013)0F12+1F20+2F01=0zyklisch(012)

Zusammenfassung der homogenen Maxwellgleichungen

εκλμνλFμν=0
εκλμνλFμν=0

Die "4- Rotation" des Feldstärketensors verschwindet!

Levi- Civita- Tensor: +1 für gerade Permutation von 0123 -1 für ungerade Permutation von 0123 0, sonst

Bemerkungen

  1. Levi- Civita ist vollständig antisymmetrisch (per Definition).
  1. εκλμν
  2. transformiert unter Lorentz- Trafo
εκλμν´=UκαUλβUμγUνδεαβγδ=|Uκ0Uκ1Uκ2Uκ3Uλ0Uλ1Uλ2Uλ3Uμ0Uμ1Uμ2Uμ3Uν0Uν1Uν2Uν3|=(detU)εκλμν(detU)=±1

Damit nun der Levi- Civita- Tensor invariant unter Lorentz- Trafos wird, also

εκλμν´=εκλμν,
muss vereinbart werden, dass die Transformation lautet
εκλμν´=(detU)UκαUλβUμγUνδεαβγδ

Damit ist der Tensor aber ein Pseudotensor!

Insgesamt ist die vierdimensionale Schreibweise die gleiche Formalisierung wie im Dreidimensionalen:

(×A¯)α=εαβγβAγ

Mit Pseudovektor

(×A¯)α