Tröpfchenmodell, Weizsäckersche Massenformel

Aus PhysikWiki
Zur Navigation springen Zur Suche springen

Die Abfrage enthält eine leere Bedingung.


Die nahezu konstante Nukleonendichte ρ1017kg/m3 und der nahezu konstante B/A-Wert ("Kondensationswärme") legt die Analogie zum Flüssigkeitstropfen nahe. Massenformel[1]


Bindungsenergie setzt sich aus 5 Anteilen zusammen:

B=i=15Bi
1. Volumenenergie
B1=a1A Volumenenergie ("Kondensationswärme" ) vermindert um
2. Oberflächenenergie
B2=a2A2/3 ~ Anzahl der Nukleonen an der

Oberfläche, die weniger stark gebunden sind.

3. Coulombenergie
B3=14πϵ053Z(Z1)e2R=a3Z(Z1)A1/3 einer homogen geladenen Kugel

Durch die Coulombenergie B3 würden für Isobare (A = const) zu stark Kerne mit vielen Neutronen bevorzugt. In Wirklichkeit ist jedoch ZN.

Genauer: Nuklidkarte

Nuklidkarte

Als Gegengewicht genüber dem Coulombterm deshalb:

4. Asymmetrie-Energie
B4=a4(NZ)2A

Außerdem gilt folgende Regel, wenn man die Kerne bezüglich gerader oder ungerader Protonen- oder Neutronenzahl ordnet:

(g,g)(u,g),(g,u)(u,u)Abnahme der Stabilitaetstab. Kerne15850,536

5. Parität
Deshalb B5=δ=a5A1/2

mit (g, g) : +δ(u, g) , (g, u) : 0(u, u) : -δ


Anpassung der Formel an viele Massenwerte gibt einen optimalen Wertesatz für die 5 Parameter ai:a1=16MeV,a2=18MeV,a3=0,7MeV,a4=23MeV und mit a5=12MeV [2]). Genauigkeit 1%ab40.

Folgerungen aus der Weizsäckerschen Massenformel

I. Isobarenregeln

Für Isobare (A = const.) ist die Massenformel quadratisch in Z, deshalb bekommt man für A = ungerade, d.h. für (u, g)- und (g, u)-Kerne eine Parabel und für A = gerade, d.h. für (g, g)- und (u, u)-Kerne zwei Parabeln, die durch den Abstand 2δ der Paarungsenergie δ getrennt sind.

Isobarenparabeln

Trägt man die Massenwerte in die Nuklidkarte auf der N-Z-Ebene nach oben auf, dann sind die Isobarenparabeln Schnitte längs der Linie A = Z + N = const. Die stabilen Kerne liegen in der "Talsohle des Massetals".


Umwandlung durch Beta-Zerfall:

β+:np+e+ν~β:np+e++νe+pn+ν~ Konkurrenzprozeß: Kerneinfang

II. Kernspaltung und Fusion

Allgemein für leichtere Kerne Energiegewinn durch Fusion, für schwerere Kerne durch Spaltung möglich. Spontane Fusion durch Coulombabstoßung, spontane Spaltung durch Spaltschwelle behindert.

Spaltung

Stabilitätsbetrachtung bezüglich spontaner Spaltung
Coulombenergie
B3B3(115ϵ)2 nimmt ab.
Oberflächenenergie
B2B2(1+25ϵ)2 nimmt zu.

Stabilitätsbedingung gegenüber spontaner Spaltung: größere Zunahme der Oberflächenenergie als Abnahme der Coulombenergie.

Rechnung: Z2/A51

Für Z2/A51 Spaltschwelle:


Spaltschwelle


Neutroneninduzierte Spaltung bei Uran durch freiwerdende Bindungsenergie bei Neutroneneinfang. Für thermische Neutronen ist diese Bindungsenergie

bei 235U+n236U+6,4MeV(g,u)n(g,g)

bei 238U+n239U+4,8MeV(g,g)n(g,u)

Die fehlende Paarungsenergie bei 239U bedingt die niedrigere Bindungsenergie, so daß bei 238U der Einbau thermischer Neutronen nicht zur Überwindung der Spaltschwelle ausreicht.


Allgemein Spaltprozeß: 235U+n(thermisch)236UX+Y+kn


Spaltbruchstücke X und Y instabil wegen Neutronenüberschuß, β-Zerfall, z.B.

instabile Spaltbruchstücke

Grobe Abschätzung für 235U-Verbrauch:

1kg235U:E=NΔE10002356×1023×2×108×1,6×1019Ws8×1013Ws108MWd

That’s more than snseblie! That’s a great post!

xAu9UT <a href="http://jwxdzufcycld.com/">jwxdzufcycld</a>

  1. Weizsäcker Z. Phys. 96, 431 (1935)
  2. (Seeger Nucl. Phys. 25, 1(1961)