Das ideale Fermigas

Aus PhysikWiki
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen




  1. Teilchen- Zustände sind die Eigenzustände zur 1- Teilchen- Energie Ei

Großkanonischer Statistischer Operator:

Die Wahrscheinlichkeit, das System in einem bestimmten Zustand zu finden ist gleich dem Erwartungswert des statistischen Operators in diesem Zustand:

Also für den Vielteilchenzustand :

mit der Einteilchenenergie Ej und den Besetzungszahlen Nj

Diese Wahrscheinlichkeit ist:

Dies ist ein Ergebnis für einen Zustand!

Die Großkanonsiche Zustandsumme Y gewinnt man, indem man über alle möglichen Vielteilchenzustände noch summiert, also:

Jetzt muss bei der Auswertung die unterschiedliche Teilchenart berücksichtigt werden, nämlich in der Summation über Nj. Handelt es sich um Fermionen, so wird nur bis 1 summiert. Handelt es sich um Bosonen, so wird bis unendlich summiert!

Fermionen

Also folgt:

separiert!!

Dies als Gesamtwahrscheinlichkeit, das System mit der Besetzung zu finden!

Mittlere Besetzungszahl im Einteilchenzustand :

Aus mit

folgt:

Also:


Die Fermi-Verteilung!


Dies folgt auch explizit aus

speziell folgt dies auch aus

aber nur wegen Nj = 0,1

  • 2 Möglichkeiten! → Mittelwert liegt in der Mitte
rechts besetzte und links unbesetzte Zustände

FJ: Nj:=1/(1+exp((Ej-mue)/Boltz)); 1 Nj := --------------------- 1 + exp(1/5 Ej - 1/5) > Boltz:=5; Boltz := 5 > mue:=1; mue := 1 * plot(Nj,Ej=0..50);]]

Für T → 0
(Stufenfunktion), sogenannter Quantenlimes!
T>0
Aufweichungszone bei der Breite

(sehr hohe Energien) →

  • die Fermiverteilung nähert sich der Boltzmann- Verteilung an (klassischer Grenzfall!!)
  • keine Berücksichtigung des Pauli- Prinzips mehr!


Beispiel einer Maxwell- Boltzmann- Verteilung sehr hoher Energien!

Gesamte mittlere Teilchenzahl
thermische Zustandsgleichung

Energie und Zustandsdichte freier Teilchen

Energie- Eigenwerte:

Das System sei in einem Würfel V = L³ eingeschlossen!

Zyklische Randbedingungen (Born - v. Karman):

Ein Zustand im k- Raum beansprucht also das Volumen:

Dabei wurde jedoch kein Spin berücksichtigt!

Thermodynamischer limes (großes Volumen V):

Übergang zum Quasikontinuum:

In Übereinstimmung mit Kapitel 4.1, Seite 100

Spinentartung:

(2s+1)- fache Entartung!

Kugelsymmetrisches Integral:

Großkanonische Zustandssumme:

sogenannte Fugizität!

Partielle Integration:

Mit der Fermi- Verteilung , also:

Diskret:

Somit haben wir die thermische Zustands-Gleichung




Bemerkungen

Dies gilt auch für ein klassisches ideales Gas!

Klassisch:

Später werden wir sehen: Das gilt auch für Bose- Verteilung!!

Also unabhängig von der speziellen Statistik!


Entartetes Fermi-Gas

Klassischer Grenzfall der Fermi- Verteilung:

(Maxwell- Boltzmann- Verteilung)

für

(stark verdünnt)

  • klassischer Limes!
  • Merke positives chemisches Potenzial ist ein QM- Grenzfall!!

Nichtklassischer Grenzfall ("Fermi- Entartung ")

Für

(Grenzfall hoher Dichte!)


Gesamte Teilchenzahl:

Innere Energie:

Substitution

Definition: Fermi- Dirac- Integral der Ordnung s:

Entwicklung für

, also Entartung:

weitere Substitution:

Somit kann man die Grenzen erweitern, da

Dies kann man durch Entwicklung von

lösen:

Somit:

Für die Terme gilt im Einzelnen:

Bleibt Integral I zu lösen:

Somit ergibt sich das Fermi- Dirac- Integral gemäß

Speziell:

Also:

Definition: Fermi- Energie:

Bei T= 0 Kelvin sind die Zustände mit

voll besetzt, die anderen leer!

Wir können dann

durch

und

eliminieren:

T→0

Für größere Temperaturen T>0 wird nun

in niedrigster Ordnung in

entwickelt und diese Entwicklung dann eingesetzt in die Formel

Jetzt wird in niedrigster Ordnung in

entwickelt:

Das heißt, für kT=1 zeigt µ über Ef etwa folgenden verlauf:

die Kurve wird für höhere Temperaturen immer weiter auseinandergedehnt!

Innere Energie

Also:

Verwende:

So dass:

Mit

folgt:

Somit haben wir die kalorische Zustandsgleichung

und die thermische Zustandsgleichung

Das bedeutet:

Der Druck des fermigases ist um einen Faktor

größer als in klassischen idealen Gasen

Beispiel:

1 eV entspricht 10.000 K!!

Grund ist das Pauli- Prinzip!!

Also eine effektive Abstoßung der Teilchen! Dies bewirkt für niedrige Temperaturen den enormen Faktor

,

mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist.

Für sehr hohe Temperaturen überwiegt dann der hintere teil, und es gilt:

Der Fermidruck ist etwa

Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor

!

Spezifische Wärme

Die Wärmekapazität ist sage und schreibe um den Faktor

kleiner als bei idealen gasen.

Bei T ~ 300 K ist dies 1/ 40!

ideales Gas:

Physikalsicher Grund:

Nur die Teilchen in der " Aufweichungszone"

tragen zur spezifischen Wärme bei, da nur sie in freie Zustände thermisch angeregt werden könen :

Zahl:

jedes hat Energie ~ kT


Beispiele für entartete Fermigase

  • Elektronen in Metallen → hohe Dichten!
  • Elektronen in Halbleitern, bei sehr tiefen Temperaturen oder hoher Dotierung!

Nichtenatartetes fermigas

verdünntes, nichtrelativistisches Quantengas!

z.B. Elektronen in Halbleitern im Normalbereich!

Voraussetzung:

das heißt:

Entwicklung der Fermi- Dirac- Integrale nach Potenzen von

Dabei ist

das Boltzman- Limit mit der Quantenkorrektur

Also:

mit der Entartungskonzentration

Also genähert:

Bei vollständiger Nichtentartung:

Die klassische Maxwell- Boltzmann- Verteilung (vergl. S. 101)

Elimination von

durch

  1. Näherung:
  1. Näherung

Dabei wurden alle Terme der Ordnung

weggenähert!

Also:

kalorische Zustandsgleichung

mit der Quantenkorrektur

thermische Zustandsgleichung

Also:

Dabei ist

die Zustandsgleichung des klassischen idealen Gases und

eine Erhöhung des klassischen Drucks durch die Fermi- Abstoßung!

Nebenbemerkung:

Mit der thermischen Wellenlänge entsprechend der de Broglie-Wellenlänge für

E= kT also, schreibt man: