Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1508.12 on revision:1508

* Page found: Lagrangegleichungen 2. Art (eq math.1508.12)

(force rerendering)

Occurrences on the following pages:

Hash: 46feb0debd0c7987e06b92394100a3ea

TeX (original user input):

\begin{align}
  & \frac{d}{dt}\left( \frac{\partial }{\partial {{{\dot{q}}}_{j}}}T \right){{-}_{{}}}\left( \frac{\partial }{\partial {{q}_{j}}}T \right)-{{Q}_{j}}=0 \\
 & \Rightarrow \frac{d}{dt}\left( \frac{\partial }{\partial {{{\dot{q}}}_{k}}}T \right){{-}_{{}}}\left( \frac{\partial }{\partial {{q}_{k}}}T \right)={{Q}_{k\quad \quad k=1,....,f}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {d}{dt}}\left({\frac {\partial }{\partial {{\dot {q}}_{j}}}}T\right){{-}_{}}\left({\frac {\partial }{\partial {{q}_{j}}}}T\right)-{{Q}_{j}}=0\\&\Rightarrow {\frac {d}{dt}}\left({\frac {\partial }{\partial {{\dot {q}}_{k}}}}T\right){{-}_{}}\left({\frac {\partial }{\partial {{q}_{k}}}}T\right)={{Q}_{k\quad \quad k=1,....,f}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.083 KB / 469 B) :

ddt(q˙jT)(qjT)Qj=0ddt(q˙kT)(qkT)=Qkk=1,....,f
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mspace width="1em"></mspace><mspace width="1em"></mspace><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>f</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Lagrangegleichungen 2. Art page

Identifiers

  • d
  • d
  • t
  • q˙j
  • T
  • qj
  • T
  • Qj
  • d
  • d
  • t
  • q˙k
  • T
  • qk
  • T
  • Q
  • k
  • k
  • f

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results