Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1693.44 on revision:1693
* Page found: Spin- Operatoren und Zustände (eq math.1693.44)
(force rerendering)Occurrences on the following pages:
Hash: a55c1b64d425aa40899c15404e3c2874
TeX (original user input):
\begin{align}
& {{{\hat{\bar{\sigma }}}}_{1}}{{{\hat{\bar{\sigma }}}}_{2}}=\left( \begin{matrix}
0 & 1 \\
1 & 0 \\
\end{matrix} \right)\left( \begin{matrix}
0 & -i \\
i & 0 \\
\end{matrix} \right)=\left( \begin{matrix}
-i & 0 \\
0 & i \\
\end{matrix} \right)=i{{{\hat{\bar{\sigma }}}}_{3}} \\
& {{{\hat{\bar{\sigma }}}}_{2}}{{{\hat{\bar{\sigma }}}}_{1}}=\left( \begin{matrix}
0 & -i \\
i & 0 \\
\end{matrix} \right)\left( \begin{matrix}
0 & 1 \\
1 & 0 \\
\end{matrix} \right)=-i{{{\hat{\bar{\sigma }}}}_{3}} \\
& \Rightarrow \left[ {{{\hat{\bar{\sigma }}}}_{1,}}{{{\hat{\bar{\sigma }}}}_{2}} \right]=2i{{{\hat{\bar{\sigma }}}}_{3}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{{\hat {\bar {\sigma }}}_{1}}{{\hat {\bar {\sigma }}}_{2}}=\left({\begin{matrix}0&1\\1&0\\\end{matrix}}\right)\left({\begin{matrix}0&-i\\i&0\\\end{matrix}}\right)=\left({\begin{matrix}-i&0\\0&i\\\end{matrix}}\right)=i{{\hat {\bar {\sigma }}}_{3}}\\&{{\hat {\bar {\sigma }}}_{2}}{{\hat {\bar {\sigma }}}_{1}}=\left({\begin{matrix}0&-i\\i&0\\\end{matrix}}\right)\left({\begin{matrix}0&1\\1&0\\\end{matrix}}\right)=-i{{\hat {\bar {\sigma }}}_{3}}\\&\Rightarrow \left[{{\hat {\bar {\sigma }}}_{1,}}{{\hat {\bar {\sigma }}}_{2}}\right]=2i{{\hat {\bar {\sigma }}}_{3}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.877 KB / 492 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mo>−</mo><mi>i</mi></mtd></mtr><mtr><mtd><mi>i</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mo>−</mo><mi>i</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>i</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>i</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mo>−</mo><mi>i</mi></mtd></mtr><mtr><mtd><mi>i</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>−</mo><mi>i</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>,</mo></mrow></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mn>2</mn><mi>i</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Spin- Operatoren und Zustände page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results