Generalisierte Koordinaten: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „{{Scripthinweis|Mechanik|1|4}} Problematischerweise liegen bei holonomen Zwangsbedingungen <math>{{f}_{\lambda }}({{\vec{r}}_{1}}(t),{{\vec{r}}_{2}}(t),{{\vec{r…“
 
*>SchuBot
K Interpunktion, replaced: ! → ! (2), ( → ( (2)
 
(3 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Scripthinweis|Mechanik|1|4}}
<noinclude>{{Scripthinweis|Mechanik|1|4}}</noinclude>
 
Problematischerweise liegen bei holonomen Zwangsbedingungen
Problematischerweise liegen bei holonomen Zwangsbedingungen




<math>{{f}_{\lambda }}({{\vec{r}}_{1}}(t),{{\vec{r}}_{2}}(t),{{\vec{r}}_{3}}(t),...{{\vec{r}}_{N}}(t),t)=0\quad \quad \lambda =1,...\nu \quad f\ddot{u}r\ alle\ t</math>
:<math>{{f}_{\lambda }}({{\vec{r}}_{1}}(t),{{\vec{r}}_{2}}(t),{{\vec{r}}_{3}}(t),...{{\vec{r}}_{N}}(t),t)=0\quad \quad \lambda =1,...\nu \quad f\ddot{u}r\ alle\ t</math>




gekoppelte Koordinaten vor ( die Koordinaten sind in den Zwangsbedingungen gekoppelt).
gekoppelte Koordinaten vor (die Koordinaten sind in den Zwangsbedingungen gekoppelt).


Somit können die Punktkoordinaten
Somit können die Punktkoordinaten




<math>\left\{ {{{\vec{r}}}_{1}}(t),{{{\vec{r}}}_{2}}(t),{{{\vec{r}}}_{3}}(t),...{{{\vec{r}}}_{N}}(t) \right\}</math>
:<math>\left\{ {{{\vec{r}}}_{1}}(t),{{{\vec{r}}}_{2}}(t),{{{\vec{r}}}_{3}}(t),...{{{\vec{r}}}_{N}}(t) \right\}</math>
nicht unabhängig voneinander variiert werden.
nicht unabhängig voneinander variiert werden.


<u>'''Ziel:'''</u>
<u>'''Ziel:'''</u>


Suche einen Satz von f unabhängigen generalisierten Koordinaten. Diese sind optimal angepasst, wenn so viele unabhängige Koordinaten wie Freiheitsgrade existieren:
*Suche einen Satz von f unabhängigen generalisierten Koordinaten. Diese sind optimal angepasst, wenn so viele unabhängige Koordinaten wie Freiheitsgrade existieren: <math>\left\{ {{q}_{1}}(t),{{q}_{2}}(t),...{{q}_{f}}(t) \right\}\quad f=1,2,...3N-\nu </math>
 
*Anschließend können Bewegungsgleichungen für die <math>\left\{ {{q}_{1}}(t),{{q}_{2}}(t),...{{q}_{f}}(t) \right\}\quad f=1,2,...3N-\nu </math> aus einfachen Extremalprinzipien ermittelt werden.
 
<math>\left\{ {{q}_{1}}(t),{{q}_{2}}(t),...{{q}_{f}}(t) \right\}\quad f=1,2,...3N-\nu </math>
 
 
Anschließend können Bewegungsgleichungen für die
<math>\left\{ {{q}_{1}}(t),{{q}_{2}}(t),...{{q}_{f}}(t) \right\}\quad f=1,2,...3N-\nu </math>
aus einfachen Extremalprinzipien ermittelt werden.


Wesentlich: Die
Wesentlich: Die
<math>\left\{ {{q}_{1}}(t),{{q}_{2}}(t),...{{q}_{f}}(t) \right\}\quad f=1,2,...3N-\nu </math>
:<math>\left\{ {{q}_{1}}(t),{{q}_{2}}(t),...{{q}_{f}}(t) \right\}\quad f=1,2,...3N-\nu </math>
sind FREI variierbar ! Wegen
sind FREI variierbar! Wegen




<math>{{\vec{r}}_{i}}={{\vec{r}}_{i}}\left( {{q}_{1}}(t),{{q}_{2}}(t),...{{q}_{f}}(t) \right)\quad f=1,2,...3N-\nu </math>
:<math>{{\vec{r}}_{i}}={{\vec{r}}_{i}}\left( {{q}_{1}}(t),{{q}_{2}}(t),...{{q}_{f}}(t) \right)\quad f=1,2,...3N-\nu </math>
sind die Zwangsbedingungen identisch erfüllt.
sind die Zwangsbedingungen identisch erfüllt.


<u>'''Beispiel: Der Massenpunkt auf der bewegten Ebene:'''</u>
{{Beispiel|'''Beispiel: Der Massenpunkt auf der bewegten Ebene:'''




<math>\vec{a}\cdot (\vec{r}-{{\vec{r}}_{o}}(t))=0</math>
:<math>\vec{a}\cdot (\vec{r}-{{\vec{r}}_{o}}(t))=0</math>






Betrachten wir ein mitbewegtes Koordinatensystem
Betrachten wir ein mitbewegtes Koordinatensystem
<math>\bar{e}{{\acute{\ }}_{1}},\bar{e}{{\acute{\ }}_{2}}</math>
:<math>\bar{e}{{\acute{\ }}_{1}},\bar{e}{{\acute{\ }}_{2}}</math>




Zeile 48: Zeile 42:




<math>\bar{r}={{\bar{r}}_{o}}(t)+{{q}_{1}}\bar{e}{{\acute{\ }}_{1}}+{{q}_{2}}\bar{e}{{\acute{\ }}_{2}}</math>
:<math>\bar{r}={{\bar{r}}_{o}}(t)+{{q}_{1}}\bar{e}{{\acute{\ }}_{1}}+{{q}_{2}}\bar{e}{{\acute{\ }}_{2}}</math>




Zeile 54: Zeile 48:




<math>\left\{ {{q}_{1}},{{q}_{2}} \right\}</math>
:<math>\left\{ {{q}_{1}},{{q}_{2}} \right\} ,  f=2</math>
,  f=2
}}
{{Beispiel|'''Beispiel: Massepunkt auf Kreis mit Radius R:'''


<u>'''Beispiel: Massepunkt auf Kreis mit Radius R:'''</u>
:<math>\begin{align}
 
 
 
<math>\begin{align}
   & \bar{r}=R(\cos \phi {{{\bar{e}}}_{1}}+\sin \phi {{{\bar{e}}}_{2}}) \\
   & \bar{r}=R(\cos \phi {{{\bar{e}}}_{1}}+\sin \phi {{{\bar{e}}}_{2}}) \\
  & q=\phi  \\
  & q=\phi  \\
  & f=1 \\
  & f=1 \\
\end{align}</math>
\end{align}</math>
 
}}


'''Virtuelle Verrückungen'''
'''Virtuelle Verrückungen'''
Zeile 73: Zeile 64:




<math>\delta {{\bar{r}}_{i}}</math>
:<math>\delta {{\bar{r}}_{i}}</math>
wird ausgedrückt durch
wird ausgedrückt durch
<math>\delta {{q}_{1}},...,\delta qf</math>
:<math>\delta {{q}_{1}},...,\delta qf</math>








Betrachten wir eine reale Verrückung ( in der Zeit), so gilt:
Betrachten wir eine reale Verrückung (in der Zeit), so gilt:




<math>{{\vec{v}}_{i}}=\frac{d}{dt}{{\bar{r}}_{i}}=\sum\limits_{j=1}^{f}{\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}{{{\dot{q}}}_{j}} \right)}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}</math>
:<math>{{\vec{v}}_{i}}=\frac{d}{dt}{{\bar{r}}_{i}}=\sum\limits_{j=1}^{f}{\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}{{{\dot{q}}}_{j}} \right)}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}</math>




Zeile 89: Zeile 80:




<math>\frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{\vec{v}}_{i}}=\frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{\left[ \sum\limits_{j=1}^{f}{\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}{{{\dot{q}}}_{j}} \right)}+\frac{\partial }{\partial t}{{{\bar{r}}}_{i}} \right]}_{{}}}=\frac{\partial }{\partial {{q}_{j}}}{{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math>
:<math>\frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{\vec{v}}_{i}}=\frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{\left[ \sum\limits_{j=1}^{f}{\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}{{{\dot{q}}}_{j}} \right)}+\frac{\partial }{\partial t}{{{\bar{r}}}_{i}} \right]}_{{}}}=\frac{\partial }{\partial {{q}_{j}}}{{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math>




Mit diesen Gleichung kann die Virtuelle Arbeit der eingeprägten Kräfte gewonnen werden:
Mit diesen Gleichung kann die {{FB|Virtuelle Arbeit}} der eingeprägten Kräfte gewonnen werden:




<math>\sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\delta {{{\vec{r}}}_{i}}}=\sum\limits_{j}{\left\{ \sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}} \right\}\delta q_{j}^{{}}}=\sum\limits_{j=1}^{f}{{{Q}_{j}}\delta }q_{j}^{{}}</math>
:<math>\sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\delta {{{\vec{r}}}_{i}}}=\sum\limits_{j}{\left\{ \sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}} \right\}\delta q_{j}^{{}}}=\sum\limits_{j=1}^{f}{{{Q}_{j}}\delta }q_{j}^{{}}</math>




Zeile 101: Zeile 92:




<math>{{Q}_{j}}=\sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}}</math>
:<math>{{Q}_{j}}=\sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}}</math>




Sind die eingeprägten Kräfte konservativ:
Sind die eingeprägten Kräfte '''konservativ''':




<math>{{\vec{X}}_{i}}=-{{\nabla }_{\vec{r}i}}V({{\bar{r}}_{1}},{{\bar{r}}_{2}},...,{{\bar{r}}_{N}})</math>
:<math>{{\vec{X}}_{i}}=-{{\nabla }_{\vec{r}i}}V({{\bar{r}}_{1}},{{\bar{r}}_{2}},...,{{\bar{r}}_{N}})</math>




Zeile 113: Zeile 104:




<math>-\frac{\partial V}{\partial {{q}_{j}}}=-\sum\limits_{i}^{{}}{{{\nabla }_{\vec{r}i}}V({{{\bar{r}}}_{1}},{{{\bar{r}}}_{2}},...,{{{\bar{r}}}_{N}})\frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}}=\sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}}={{Q}_{j}}</math>
:<math>-\frac{\partial V}{\partial {{q}_{j}}}=-\sum\limits_{i}^{{}}{{{\nabla }_{\vec{r}i}}V({{{\bar{r}}}_{1}},{{{\bar{r}}}_{2}},...,{{{\bar{r}}}_{N}})\frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}}=\sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}}={{Q}_{j}}</math>




Somit besitzen auch die verallgemeinerten Kräfte ein Potenzial, natürlich das physikalisch gleiche wie die eingeprägten Kräfte !
Somit besitzen auch die verallgemeinerten Kräfte ein '''Potenzial''', natürlich das physikalisch gleiche wie die eingeprägten Kräfte!

Aktuelle Version vom 12. September 2010, 23:28 Uhr




Problematischerweise liegen bei holonomen Zwangsbedingungen


fλ(r1(t),r2(t),r3(t),...rN(t),t)=0λ=1,...νfu¨rallet


gekoppelte Koordinaten vor (die Koordinaten sind in den Zwangsbedingungen gekoppelt).

Somit können die Punktkoordinaten


{r1(t),r2(t),r3(t),...rN(t)}

nicht unabhängig voneinander variiert werden.

Ziel:

Wesentlich: Die

{q1(t),q2(t),...qf(t)}f=1,2,...3Nν

sind FREI variierbar! Wegen


ri=ri(q1(t),q2(t),...qf(t))f=1,2,...3Nν

sind die Zwangsbedingungen identisch erfüllt.


Beispiel: Der Massenpunkt auf der bewegten Ebene:


a(rro(t))=0


Betrachten wir ein mitbewegtes Koordinatensystem

e¯´1,e¯´2


Für den Radiusvektor existiert dann eine Verallgemeinerung:


r¯=r¯o(t)+q1e¯´1+q2e¯´2


Somit existiert eine injektive Abbildung der Koordinaten und wir können als generalisierte Koordinaten bestimmen:


{q1,q2},f=2


Beispiel: Massepunkt auf Kreis mit Radius R:
r¯=R(cosϕe¯1+sinϕe¯2)q=ϕf=1


Virtuelle Verrückungen

müssen nun auch in den generalisierten Koordinaten ausgedrückt werden, also:


δr¯i

wird ausgedrückt durch

δq1,...,δqf



Betrachten wir eine reale Verrückung (in der Zeit), so gilt:


vi=ddtr¯i=j=1f(r¯iqjq˙j)+tr¯i


Daraus ergibt sich jedoch die Gleichung:


q˙jvi=q˙j[j=1f(r¯iqjq˙j)+tr¯i]=qjr¯i(q1,...,qf,t)


Mit diesen Gleichung kann die Virtuelle Arbeit der eingeprägten Kräfte gewonnen werden:


iXiδri=j{iXir¯iqj}δqj=j=1fQjδqj


Somit kann man als Ausdruck für die verallgemeinerte Kraft angeben:


Qj=iXir¯iqj


Sind die eingeprägten Kräfte konservativ:


Xi=riV(r¯1,r¯2,...,r¯N)


So folgt:


Vqj=iriV(r¯1,r¯2,...,r¯N)r¯iqj=iXir¯iqj=Qj


Somit besitzen auch die verallgemeinerten Kräfte ein Potenzial, natürlich das physikalisch gleiche wie die eingeprägten Kräfte!