Dynamik des 2- Zustands- Systems: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
*>SchuBot
K Interpunktion, replaced: ! → ! (2), ( → (
 
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
Somit:
Somit:


<math>\hat{V}=-\frac{e\hbar }{2{{m}_{0}}}\hat{\bar{\sigma }}\cdot \bar{B}=-\frac{e\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}=\hbar {{\omega }_{l}}{{\hat{\bar{\sigma }}}_{3}}</math>
:<math>\hat{V}=-\frac{e\hbar }{2{{m}_{0}}}\hat{\bar{\sigma }}\cdot \bar{B}=-\frac{e\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}=\hbar {{\omega }_{l}}{{\hat{\bar{\sigma }}}_{3}}</math>


{{Def|Mit der '''Larmor-Frequenz''' <math>{{\omega }_{l}}:=\frac{|e|B}{2{{m}_{0}}}</math>|Larmor-Frequenz}}
{{Def|Mit der '''Larmor-Frequenz''' <math>{{\omega }_{l}}:=\frac{|e|B}{2{{m}_{0}}}</math>|Larmor-Frequenz}}


Wenn der Spin an keine weitere Variable ankoppelt, so ist <math>\hat{H}=\hat{V}</math> der Hamiltonoperator der Spinvariable ( im Spin- Hilbertraum).
Wenn der Spin an keine weitere Variable ankoppelt, so ist <math>\hat{H}=\hat{V}</math> der Hamiltonoperator der Spinvariable (im Spin- Hilbertraum).
Die Dynamik eines Spins im Magnetfeld ergibt sich über den Zeitableitungsoperator:
Die Dynamik eines Spins im Magnetfeld ergibt sich über den Zeitableitungsoperator:
:<math>{{\hat{\bar{\sigma }}}^{\circ }}=\frac{i}{\hbar }\left[ \hat{H},\hat{\bar{\sigma }} \right]=i{{\omega }_{l}}\left[ {{{\hat{\bar{\sigma }}}}_{3}},{{{\hat{\bar{\sigma }}}}_{{}}} \right]</math>
:<math>{{\hat{\bar{\sigma }}}^{\circ }}=\frac{i}{\hbar }\left[ \hat{H},\hat{\bar{\sigma }} \right]=i{{\omega }_{l}}\left[ {{{\hat{\bar{\sigma }}}}_{3}},{{{\hat{\bar{\sigma }}}}_{{}}} \right]</math>
Zeile 17: Zeile 17:
:<math>\frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =\frac{i}{\hbar }\left\langle \left[ H,{{{\hat{\bar{\sigma }}}}_{1}} \right] \right\rangle =i{{\omega }_{l}}\left\langle \left[ {{{\hat{\bar{\sigma }}}}_{3}},{{{\hat{\bar{\sigma }}}}_{1}} \right] \right\rangle =-2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle </math>
:<math>\frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =\frac{i}{\hbar }\left\langle \left[ H,{{{\hat{\bar{\sigma }}}}_{1}} \right] \right\rangle =i{{\omega }_{l}}\left\langle \left[ {{{\hat{\bar{\sigma }}}}_{3}},{{{\hat{\bar{\sigma }}}}_{1}} \right] \right\rangle =-2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle </math>


<math>\begin{align}
:<math>\begin{align}
& \frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =-2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle  \\
& \frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =-2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle  \\
& \frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle =2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle  \\
& \frac{d}{dt}\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle =2{{\omega }_{l}}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle  \\
Zeile 26: Zeile 26:
:<math>\frac{{{d}^{2}}}{d{{t}^{2}}}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle +{{\left( 2{{\omega }_{l}} \right)}^{2}}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =0</math>
:<math>\frac{{{d}^{2}}}{d{{t}^{2}}}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle +{{\left( 2{{\omega }_{l}} \right)}^{2}}\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle =0</math>
Die Dynamik der Spins bildet also einen Oszillator in der x-y- Ebene.
Die Dynamik der Spins bildet also einen Oszillator in der x-y- Ebene.
Die zeitliche Unabhängigkeit der Spin3- Komponente liegt dabei alleine an der Wahl des Koordinatensystems, bzw. der Basis ! Wir haben diese gerade so gewählt, dass die 3- Komponente zeitlich unabhängig wird.
Die zeitliche Unabhängigkeit der Spin3- Komponente liegt dabei alleine an der Wahl des Koordinatensystems, bzw. der Basis! Wir haben diese gerade so gewählt, dass die 3- Komponente zeitlich unabhängig wird.
Die Lösung der Diffgleichung liefert:
Die Lösung der Diffgleichung liefert:
<math>\begin{align}
:<math>\begin{align}
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right)+{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right)+{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right)-{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}\cos \left( 2{{\omega }_{l}}t \right)-{{\left\langle {{{\hat{\bar{\sigma }}}}_{1}} \right\rangle }_{0}}\sin \left( 2{{\omega }_{l}}t \right) \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{3}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{3}} \right\rangle }_{0}} \\
& {{\left\langle {{{\hat{\bar{\sigma }}}}_{3}} \right\rangle }_{t}}={{\left\langle {{{\hat{\bar{\sigma }}}}_{3}} \right\rangle }_{0}} \\
\end{align}</math>
\end{align}</math>
[[File:Moglf2119_Peonza_simétrica.jpg|miniatur|klassischer Kreisel]]
[[File:Moglf2119 Peonza simétrica.jpg|miniatur|klassischer Kreisel]]


Die Anfangsbedingungen können ebenfalls durch Wahl des Koordinatensystems (feste x-y- Ebene) beeinflusst werden.
Die Anfangsbedingungen können ebenfalls durch Wahl des Koordinatensystems (feste x-y- Ebene) beeinflusst werden.
Wähle:
Wähle:
o.B. d.A.:
o.B. d.A.:
<math>{{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}=0</math>
:<math>{{\left\langle {{{\hat{\bar{\sigma }}}}_{2}} \right\rangle }_{0}}=0</math>


Wir können uns den Betrag des Erwartungswertes des gesamten Spinvektors ansehen und es zeigt sich :
Wir können uns den Betrag des Erwartungswertes des gesamten Spinvektors ansehen und es zeigt sich :
Zeile 46: Zeile 46:
Mit anderen Worten:
Mit anderen Worten:


:<math>{{\left| {{\left\langle {{{\hat{\bar{\sigma }}}}_{{}}} \right\rangle }_{t}} \right|}^{2}}={{\left| {{\left\langle {{{\hat{\bar{\sigma }}}}_{{}}} \right\rangle }_{0}} \right|}^{2}}=const</math>, der Betrag des Spins ändert sich zeitlich nicht !
:<math>{{\left| {{\left\langle {{{\hat{\bar{\sigma }}}}_{{}}} \right\rangle }_{t}} \right|}^{2}}={{\left| {{\left\langle {{{\hat{\bar{\sigma }}}}_{{}}} \right\rangle }_{0}} \right|}^{2}}=const</math>, der Betrag des Spins ändert sich zeitlich nicht!


Der Erwartungswert des Spins präzediert also mit der Frequenz <math>2{{\omega }_{l}}</math> um das Magnetfeld.
Der Erwartungswert des Spins präzediert also mit der Frequenz <math>2{{\omega }_{l}}</math> um das Magnetfeld.


==Schrödingergleichung  für die Spinzustände ==
==Schrödingergleichung  für die Spinzustände==
{{Gln|<math>\hbar {{\omega }_{l}}{{\hat{\bar{\sigma }}}_{3}}\left| a(t) \right\rangle =i\hbar \frac{\partial }{\partial t}\left| a(t) \right\rangle </math>|Schrödinger-Gleichung für Spinzustände}}
{{Gln|<math>\hbar {{\omega }_{l}}{{\hat{\bar{\sigma }}}_{3}}\left| a(t) \right\rangle =i\hbar \frac{\partial }{\partial t}\left| a(t) \right\rangle </math>   '''(Schrödingergleichung  für Spinzustände)'''|Schrödinger-Gleichung für Spinzustände}}


Achtung! Nur  Spin- Hamiltonian!
Achtung! Nur  Spin- Hamiltonian!


Dabei muss der Zustand <math>\left| a(t) \right\rangle </math>  in der Spinbasis entwickelbar sein:
Dabei muss der Zustand <math>\left| a(t) \right\rangle </math>  in der Spinbasis entwickelbar sein:
<math>\left| a(t) \right\rangle ={{a}_{1}}(t)\left| \uparrow  \right\rangle +{{a}_{2}}(t)\left| \downarrow  \right\rangle </math>
:<math>\left| a(t) \right\rangle ={{a}_{1}}(t)\left| \uparrow  \right\rangle +{{a}_{2}}(t)\left| \downarrow  \right\rangle </math>


'''Matrix- Darstellung:'''
'''Matrix- Darstellung:'''
Zeile 76: Zeile 76:
Die Lösung lautet:
Die Lösung lautet:


<math>\begin{align}
:<math>\begin{align}
& {{a}_{1}}(t)={{a}_{10}}{{e}^{-i{{\omega }_{l}}t}} \\
& {{a}_{1}}(t)={{a}_{10}}{{e}^{-i{{\omega }_{l}}t}} \\
& {{a}_{2}}(t)={{a}_{20}}{{e}^{i{{\omega }_{l}}t}} \\
& {{a}_{2}}(t)={{a}_{20}}{{e}^{i{{\omega }_{l}}t}} \\
\end{align}</math>
\end{align}</math>


<math>\left| a(t) \right\rangle ={{a}_{10}}{{e}^{-i{{\omega }_{l}}t}}\left| \uparrow  \right\rangle +{{a}_{20}}{{e}^{i{{\omega }_{l}}t}}\left| \downarrow  \right\rangle </math>
:<math>\left| a(t) \right\rangle ={{a}_{10}}{{e}^{-i{{\omega }_{l}}t}}\left| \uparrow  \right\rangle +{{a}_{20}}{{e}^{i{{\omega }_{l}}t}}\left| \downarrow  \right\rangle </math>


Nebenbemerkung: Hieraus gewinnt man <math>{{\left\langle {{{\hat{\bar{\sigma }}}}_{j}} \right\rangle }_{t}}</math>, also die Spinpräzession wie oben !
Nebenbemerkung: Hieraus gewinnt man <math>{{\left\langle {{{\hat{\bar{\sigma }}}}_{j}} \right\rangle }_{t}}</math>, also die Spinpräzession wie oben!
 
===Zustände mit Bahn- und Spinvariablen===
 
Sei nun <math>\left| nlm{{m}_{s}} \right\rangle </math>
ein Zustand, der Bahn- und Spinfreiheitsgrade beschreibt:
<math>\begin{align}
& \left| nlm{{m}_{s}} \right\rangle =\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle \in {{H}_{B}}\times {{H}_{S}} \\
& \left| nlm \right\rangle \in {{H}_{B}} \\
& \left| {{m}_{s}} \right\rangle \in {{H}_{S}} \\
\end{align}</math>
 
Der Bahnzustand ist Element des Bahn- Hilbertraumes und der Spinzustand Element des Spin- Hilbertraumes. Der Gesamtzustand erfordert einen Raum, der sich als DIREKTES  PRODUKT der beiden Hilberträume zeigt.
Allgemein gilt für separable oder Produktzustände <math>\left| {{n}_{1}}{{n}_{2}} \right\rangle =\left| {{n}_{1}} \right\rangle \left| {{n}_{2}} \right\rangle </math>
( äquivalente Sprechweise):
<math>\left\langle  {{m}_{1}}{{m}_{2}} \right|\left| {{n}_{1}}{{n}_{2}} \right\rangle =\left\langle  {{m}_{1}}{{m}_{2}} \right|\left| {{n}_{1}} \right\rangle \left\langle  {{m}_{1}}{{m}_{2}} \right|\left| {{n}_{2}} \right\rangle =\left\langle  {{m}_{1}} \right|\left| {{n}_{1}} \right\rangle \left\langle  {{m}_{2}} \right|\left| {{n}_{2}} \right\rangle </math>
 
Ein beliebiger Zustand kann nach Spin- Basis Zuständen <math>\left| \uparrow  \right\rangle ,\left| \downarrow  \right\rangle </math>
zerlegt werden:
<math>{{\left| \Psi  \right\rangle }_{t}}={{\left| {{\Psi }_{1}} \right\rangle }_{t}}\left| \uparrow  \right\rangle +{{\left| {{\Psi }_{2}} \right\rangle }_{t}}\left| \downarrow  \right\rangle </math>
 
mit
<math>{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}=\int_{{}}^{{}}{{{d}^{3}}r}\left| {\bar{r}} \right\rangle \left\langle  {\bar{r}} \right|{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}</math>
In der Ortsraum- Basis mit dem Bahn- Zustand  <math>\alpha =1,2</math>
 
In der Matrix- Darstellung des Spinraumes ergibt dies:
<math>{{\left| \Psi  \right\rangle }_{t}}=\left( \begin{matrix}
{{\left| {{\Psi }_{1}} \right\rangle }_{t}}  \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}}  \\
\end{matrix} \right)=\int_{{}}^{{}}{{{d}^{3}}r}\left| {\bar{r}} \right\rangle \left( \begin{matrix}
\left\langle  {\bar{r}} \right|{{\left| {{\Psi }_{1}} \right\rangle }_{t}}  \\
\left\langle  {\bar{r}} \right|{{\left| {{\Psi }_{2}} \right\rangle }_{t}}  \\
\end{matrix} \right)</math>
 
Mit
<math>\left( \begin{matrix}
{{\left| {{\Psi }_{1}} \right\rangle }_{t}}  \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}}  \\
\end{matrix} \right)</math>
entsprechend 2 Spinkomponenten, also entsprechend <math>\left| \uparrow  \right\rangle ,\left| \downarrow  \right\rangle </math>
 
Die Vollständigkeit der Zustände <math>\left| \bar{r}\uparrow  \right\rangle =\left| {\bar{r}} \right\rangle \left| \uparrow  \right\rangle ,\left| \bar{r}\downarrow  \right\rangle =\left| {\bar{r}} \right\rangle \left| \downarrow  \right\rangle </math>
 
folgt aus:
<math>\int_{{}}^{{}}{{{d}^{3}}r\left\{ \left| \bar{r}\uparrow  \right\rangle \left\langle  \bar{r}\uparrow  \right|+\left| \bar{r}\downarrow  \right\rangle \left\langle  \bar{r}\downarrow  \right| \right\}}=1\quad \in {{H}_{B}}\times {{H}_{S}}</math>
 
Weiter:
<math>\begin{align}
& \left\langle  \bar{r}\uparrow  \right|{{\left| \Psi  \right\rangle }_{t}}=\left\langle  {\bar{r}} \right|{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
& \left\langle  \bar{r}\downarrow  \right|{{\left| \Psi  \right\rangle }_{t}}=\left\langle  {\bar{r}} \right|{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{align}</math>
Also die Komponenten von <math>{{\left| \Psi  \right\rangle }_{t}}</math>
am Ort <math>\bar{r}</math>
, einmal die Komponente mit Spin <math>\uparrow </math>
und einmal die Komponente mit Spin <math>\downarrow </math>
.  Dabei gilt:
{{#ask:[[Kategorie:Mechanik]] [[Abschnitt::0]]
|format=ol
|order=ASC
|sort=Kapitel
|offset=0
|limit=20
}}  entspricht der Wahrscheinlichkeit, das Elektron zur Zeit t bei <math>\bar{r}</math>
mit Spin <math>\uparrow </math>
bzw. Spin <math>\downarrow </math>
zu finden.
<u>'''Schrödingergleichung im Spin- Bahn- Raum'''</u>
Hamilton- Operator für Bahn:
<math>{{\hat{H}}_{B}}=\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r)</math>
Elektron mit Ladung e<0
Wirkt alleine im Hilbertraum <math>{{H}_{B}}</math>
 
Hamilton- Operator für Spin:
<math>\begin{align}
& {{{\hat{H}}}_{S}}=-\hbar {{\omega }_{l}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& {{\omega }_{l}}=\frac{\left| e \right|B}{2{{m}_{0}}} \\
\end{align}</math>
 
<math>{{\hat{H}}_{S}}</math>
wirkt dabei nur im Hilbertraum <math>{{H}_{S}}</math>
 
Ohne Berücksichtigung von <math>{{\hat{H}}_{S}}</math>
:
<math>\begin{align}
& {{{\hat{H}}}_{B}}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}} \\
& \alpha =1,2 \\
\end{align}</math>
 
Also haben wir je nach Spinzustand schon 2 Schrödingergleichungen in <math>{{H}_{B}}</math>
:
Es gilt (äquivalente Darstellung):
<math>\begin{align}
& {{{\hat{H}}}_{B}}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}\Leftrightarrow \left( {{{\hat{H}}}_{B}}\times 1 \right){{\left| \Psi  \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| \Psi  \right\rangle }_{t}} \\
& \alpha =1,2 \\
\end{align}</math>
 
Dabei
<math>1</math>
=  Einsoperator im Spinraum -> Spin bleibt unberücksichtigt. Einheitsmatrix für beliebigen Vorgang im Spinraum: <math>1=\left( \begin{matrix}
1 & 0  \\
0 & 1  \\
\end{matrix} \right)</math>
 
MIT Berücksichtigung von <math>{{\hat{H}}_{S}}</math>
:
<math>\left( {{{\hat{H}}}_{B}}\times 1+{{{\hat{H}}}_{S}} \right){{\left| \Psi  \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| \Psi  \right\rangle }_{t}}</math>
 
In Matrix- Darstellung:
<math>\begin{align}
& \left( \begin{matrix}
{{{\hat{H}}}_{\acute{\ }B}}+\hbar {{\omega }_{l}} & 0  \\
0 & {{{\hat{H}}}_{\acute{\ }B}}-\hbar {{\omega }_{l}}  \\
\end{matrix} \right)\left( \begin{matrix}
{{\left| {{\Psi }_{1}} \right\rangle }_{t}}  \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}}  \\
\end{matrix} \right)=i\hbar \frac{\partial }{\partial t}\left( \begin{matrix}
{{\left| {{\Psi }_{1}} \right\rangle }_{t}}  \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}}  \\
\end{matrix} \right) \\
& \Leftrightarrow \left( {{{\hat{H}}}_{\acute{\ }B}}+\hbar {{\omega }_{l}} \right){{\left| {{\Psi }_{1}} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
& \left( {{{\hat{H}}}_{\acute{\ }B}}-\hbar {{\omega }_{l}} \right){{\left| {{\Psi }_{2}} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{align}</math>
PAULI- GLEICHUNG
'''Anwendung'''
- einfacher Zeeman- Effekt mit Spin.  1 Elektron im kugelsymmetrischen Potenzial ( Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld <math>\bar{B}=B{{\bar{e}}_{3}}</math>
 
<math>\hat{H}={{\hat{H}}_{B}}\times 1+{{H}_{S}}=\left[ \frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}</math>
 
Dabei wird durch <math>{{\hat{H}}_{B}}\times 1</math>
der Bahndrehimpuls Hamiltonian durch den Spinraum erweitert.
<math>\begin{align}
& \hat{H}={{{\hat{H}}}_{B}}\times 1+{{H}_{S}}=\left[ \frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& \hat{H}\cong \left[ \frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r) \right]\times 1-\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right) \\
& \frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r)={{H}_{0}} \\
& {{H}_{0}}\left| nlm \right\rangle ={{E}_{nl}}\left| nlm \right\rangle  \\
\end{align}</math>
 
Wie man sieht bekommt man durch den Korrekturterm <math>\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right)</math>
eine Korrektur an die Energie.
'''Für B=0 -> Eigenzustände  mit Spin'''
<math>\left( {{H}_{0}}\times 1 \right)\left| nlm{{m}_{s}} \right\rangle ={{E}_{nl}}\left| nlm{{m}_{s}} \right\rangle </math>
 
Insgesamt <math>2\left( 2l+1 \right)</math>
fach entartet. Beim H- Atom: zusätzliche l- Entartung
<math>B\ne 0</math>
 
<math>\begin{align}
& \hat{H}\left| nlm{{m}_{s}} \right\rangle ={{H}_{0}}\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle -\frac{\left| e \right|B}{2{{m}_{0}}}\left\{ \left( {{{\hat{L}}}_{3}}\left| nlm \right\rangle  \right)\left| {{m}_{s}} \right\rangle +\hbar \left( {{{\hat{\bar{\sigma }}}}_{3}}\left| {{m}_{s}} \right\rangle  \right)\left| nlm \right\rangle  \right\} \\
& {{{\hat{L}}}_{3}}\left| nlm \right\rangle =\hbar m\left| nlm \right\rangle  \\
& {{{\hat{\bar{\sigma }}}}_{3}}\left| {{m}_{s}} \right\rangle =2{{m}_{S}}\left| {{m}_{s}} \right\rangle  \\
& {{H}_{0}}\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle -\frac{\left| e \right|B}{2{{m}_{0}}}\left\{ \left( {{{\hat{L}}}_{3}}\left| nlm \right\rangle  \right)\left| {{m}_{s}} \right\rangle +\hbar \left( {{{\hat{\bar{\sigma }}}}_{3}}\left| {{m}_{s}} \right\rangle  \right)\left| nlm \right\rangle  \right\}=\left[ {{E}_{nl}}-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}\left( m+2{{m}_{s}} \right) \right]\left| nlm{{m}_{s}} \right\rangle  \\
\end{align}</math>
 
Das bedeutet:
teilweise Aufhebung der <math>2(2l+1)</math>
- fachen Entartung
( sogenannter Anomaler Zeemann- Effekt !)
<math>E={{E}_{nl}}-{{\mu }_{B}}B\left( m+2{{m}_{s}} \right)</math>
 
Dies gilt für PARAMAGNETISCHE Atome mit magnetischem Moment
<math>{{\mu }_{3}}={{\mu }_{B}}\left( m+2{{m}_{s}} \right)</math>
 
Dabei entspricht
<math>2</math>
vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist ! ( Siehe oben).
Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von <math>{{\mu }_{B}}</math>
angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren ( für den anomalen Zeemann- Effekt ):
Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben !
Da die Aufhebung der Spin- Entartung die Energiezustände wieder so " weiterrückt", dass vorher getrennte wieder zusammenfallen !
'''Tabelle: Landé- Faktoren'''
'''Teilchen''' '''s''' '''g''' '''Q'''
'''Elektron''' '''1/2''' '''2''' '''-e'''
'''Proton''' '''1/2''' '''5,59''' '''e'''
'''Neutron''' '''1/2''' '''-3,83''' '''0'''
'''Neutrino''' '''1/2''' '''0''' '''0'''
'''Photon''' '''1''' '''0''' '''0'''

Aktuelle Version vom 12. September 2010, 23:39 Uhr



Die potenzielle Energie des magnetischen Moments des Elektronen- Spins μ¯ im äußeren Magnetfeld B¯=Be¯3 beträgt:

V=μ¯^B¯ mit μ¯^=+ge2m0S¯^=+e2m0σ¯^ mit g~ 2 und e<0

Somit:

V^=e2m0σ¯^B¯=eB2m0σ¯^3=ωlσ¯^3


Mit der Larmor-Frequenz ωl:=|e|B2m0


Wenn der Spin an keine weitere Variable ankoppelt, so ist H^=V^ der Hamiltonoperator der Spinvariable (im Spin- Hilbertraum). Die Dynamik eines Spins im Magnetfeld ergibt sich über den Zeitableitungsoperator:

σ¯^=i[H^,σ¯^]=iωl[σ¯^3,σ¯^]

Berechnung der Erwartungswerte mit [σ¯^j,σ¯^k]=2iεjklσ¯^l:

ddtσ¯^1=i[H,σ¯^1]=iωl[σ¯^3,σ¯^1]=2ωlσ¯^2
ddtσ¯^1=2ωlσ¯^2ddtσ¯^2=2ωlσ¯^1ddtσ¯^3=0

Dies läßt sich reduzieren:

d2dt2σ¯^1+(2ωl)2σ¯^1=0

Die Dynamik der Spins bildet also einen Oszillator in der x-y- Ebene. Die zeitliche Unabhängigkeit der Spin3- Komponente liegt dabei alleine an der Wahl des Koordinatensystems, bzw. der Basis! Wir haben diese gerade so gewählt, dass die 3- Komponente zeitlich unabhängig wird. Die Lösung der Diffgleichung liefert:

σ¯^1t=σ¯^20sin(2ωlt)+σ¯^10cos(2ωlt)σ¯^2t=σ¯^20cos(2ωlt)σ¯^10sin(2ωlt)σ¯^3t=σ¯^30
klassischer Kreisel

Die Anfangsbedingungen können ebenfalls durch Wahl des Koordinatensystems (feste x-y- Ebene) beeinflusst werden. Wähle: o.B. d.A.:

σ¯^20=0

Wir können uns den Betrag des Erwartungswertes des gesamten Spinvektors ansehen und es zeigt sich :

|σ¯^t|2=σ¯^1t2+σ¯^2t2+σ¯^3t2=σ¯^102[cos2(2ωlt)+sin2(2ωlt)]+σ¯^302=σ¯^102+σ¯^302

Mit anderen Worten:

|σ¯^t|2=|σ¯^0|2=const, der Betrag des Spins ändert sich zeitlich nicht!

Der Erwartungswert des Spins präzediert also mit der Frequenz 2ωl um das Magnetfeld.

Schrödingergleichung für die Spinzustände

ωlσ¯^3|a(t)=it|a(t) (Schrödingergleichung für Spinzustände)


Achtung! Nur Spin- Hamiltonian!

Dabei muss der Zustand |a(t) in der Spinbasis entwickelbar sein:

|a(t)=a1(t)|+a2(t)|

Matrix- Darstellung:

ωl(1001)(a1(t)a2(t))=it(a1(t)a2(t))iωla1=a˙1iωla2=a˙2

Die Lösung lautet:

a1(t)=a10eiωlta2(t)=a20eiωlt
|a(t)=a10eiωlt|+a20eiωlt|

Nebenbemerkung: Hieraus gewinnt man σ¯^jt, also die Spinpräzession wie oben!