Deterministisches Chaos: Unterschied zwischen den Versionen
*>SchuBot K Interpunktion, replaced: ( → ( (8) |
Keine Bearbeitungszusammenfassung |
(3 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |
(kein Unterschied)
|
Aktuelle Version vom 5. Juli 2011, 11:40 Uhr
Der Artikel Deterministisches Chaos basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 7.Kapitels (Abschnitt 4) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Deterministische, aber ungeordnete Bewegung im Langzeitverhalten von Systemen mit
(autonom):
Seltsamer (chaotischer) Attraktor
komplexes, irreguläres Verhalten kann verschiedene Ursachen haben, die sich im zeitlichen verhalten einer Observablen oft schwer unterscheiden lassen.
Als Unterscheidungskriterien bieten sich an:
quasiperiodisch deterministisches Chaos stochastisches Rauschen
wenige dynamische Freiheitsgrade: viele mikroskopische Freiheits-
niedrigdimensionaler Phasenraum grade. (Statistisches Ensemble)
Attraktor: Torus
d=2,3,4,... seltsamer Attraktor, fraktale Dimension
periodisch in
für
für
diskrete Frequenzen
b r e i t e s F r e q u e n z b a n d
Instabilität der Bewegung bei kleinen
Störungen der Anfangsbedingungen
typische universelle
Bifurkationszenarien
Def.: Eine Bewegung heißt chaotisch, wenn sie empfindlich von den Anfangsbedingungen abhängt.
Quantitative Formulierung der Stabilität gegenüber kleinen Variationen der Anfangsbedingungen:
Bahnstabilität / Orbitale Stabilität
bahnstabil: Alle benachbarten Bahnen bleiben in einer
- Röhre um
Aymptotisch bahnstabil:
Der Abstand benachbarter Bahnen geht gegen Null für t→ unendlich
Ljapunov- stabil
Für DASSELBE t gilt:
für t→ unendlich (t gleicher Zeitpunkt auf beiden Bahnen)
Linearisierung in der Nähe der Lösungskurve
Dabei:
Eigenwerte und zugehörige Eigenvektoren
Formale Lösung:
Dies ist die Zeitentwicklung einer infinitesimalen Kugel um
also ein n-dimensionaler Ellipsoid mit den Hauptachsen
Definition: Stabilität ist bestimmt durch die Ljapunov-Exponenten
Nebenbemerkung: Sei
der führende (größte) Ljapunov- Exponent
Das heißt, der Abstand der anfangs leicht auseinanderliegenden Phasenraumkurven wächst mit
Für
<0: kleine Abweichungen der Anfangsbedingungen werden exponenziell gedämpft
>0: die benachbarten Bahnen laufen exponenziell auseinander (Kriterium für Chaos)
Für den chaotischen Attraktor im
gilt:
Auf dem Attraktor:
auf dem Attraktor: chaotische Bewegung
Beispiel für ein Ljapunov- Spektrum: