Das ideale Fermigas: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Thermodynamik|6|2}}</noinclude> # Teilchen- Zustände sind die Eigenzustände zur 1- Teilchen- Energie Ei '''Großkanonischer Statist…“
 
 
(8 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<noinclude>{{Scripthinweis|Thermodynamik|6|2}}</noinclude>
<noinclude>{{Scripthinweis|Thermodynamik|5|2}}</noinclude>


# Teilchen- Zustände sind die Eigenzustände zur 1- Teilchen- Energie Ei
# Teilchen- Zustände sind die Eigenzustände zur 1- Teilchen- Energie Ei


'''Großkanonischer Statistischer Operator:'''
{{FB|Großkanonischer Statistischer Operator}}:


<math>\hat{\rho }={{Y}^{-1}}\exp \left( -\beta \left( \hat{H}-\mu \hat{N} \right) \right)</math>
:<math>\hat{\rho }={{Y}^{-1}}\exp \left( -\beta \left( \hat{H}-\mu \hat{N} \right) \right)</math>


Die Wahrscheinlichkeit, das System in einem bestimmten Zustand zu finden ist gleich dem Erwartungswert des statistischen Operators in diesem Zustand:
Die Wahrscheinlichkeit, das System in einem bestimmten Zustand zu finden ist gleich dem Erwartungswert des statistischen Operators in diesem Zustand:


Also für den Vielteilchenzustand <math>\left| \alpha  \right\rangle </math>
Also für den {{FB|Vielteilchenzustand}} <math>\left| \alpha  \right\rangle </math>:


:
:<math>{{E}_{\alpha }}^{ges.}=\sum\limits_{j=1}^{l}{{}}{{E}_{j}}{{N}_{j}}</math>
 
<math>{{E}_{\alpha }}^{ges.}=\sum\limits_{j=1}^{l}{{}}{{E}_{j}}{{N}_{j}}</math>


mit der Einteilchenenergie Ej und den Besetzungszahlen Nj
mit der Einteilchenenergie Ej und den Besetzungszahlen Nj
Zeile 19: Zeile 17:
Diese Wahrscheinlichkeit ist:
Diese Wahrscheinlichkeit ist:


<math>{{P}_{\alpha }}=\left\langle  \alpha  \right|\hat{\rho }\left| \alpha  \right\rangle ={{Y}^{-1}}\left\langle  \alpha  \right|\exp \left( -\beta \left( \hat{H}-\mu \hat{N} \right) \right)\left| \alpha  \right\rangle ={{Y}^{-1}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)</math>
:<math>{{P}_{\alpha }}=\left\langle  \alpha  \right|\hat{\rho }\left| \alpha  \right\rangle ={{Y}^{-1}}\left\langle  \alpha  \right|\exp \left( -\beta \left( \hat{H}-\mu \hat{N} \right) \right)\left| \alpha  \right\rangle ={{Y}^{-1}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)</math>


Dies ist ein Ergebnis für einen Zustand !
Dies ist ein Ergebnis für einen Zustand!


Die Großkanonsiche Zustandsumme Y gewinnt man, indem man über alle möglichen Vielteilchenzustände noch summiert, also:
Die {{FB|Großkanonsiche Zustandsumme}} Y gewinnt man, indem man über alle möglichen Vielteilchenzustände noch summiert, also:


<math>Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}}^{{}}{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}}^{{}}{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right)</math>
:<math>Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}}^{{}}{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}}^{{}}{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right)</math>


Jetzt muss bei der Auswertung die unterschiedliche Teilchenart berücksichtigt werden, nämlich in der Summation über Nj. Handelt es sich um Fermionen, so wird nur bis 1 summiert. Handelt es sich um Bosonen, so wird bis unendlich summiert !
Jetzt muss bei der Auswertung die unterschiedliche Teilchenart berücksichtigt werden, nämlich in der Summation über Nj. Handelt es sich um Fermionen, so wird nur bis 1 summiert. Handelt es sich um Bosonen, so wird bis unendlich summiert!


====Fermionen====
'''Fermionen'''


<math>\begin{align}
:<math>\begin{align}


& Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}=0}^{1}{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{1}{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right) \\
& Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}=0}^{1}{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{1}{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right) \\
Zeile 45: Zeile 43:
Also folgt:
Also folgt:


<math>P\left( {{N}_{1}},...,{{N}_{l}} \right)=\prod\limits_{j=1}^{l}{{}}\frac{{{t}_{j}}^{{{N}_{j}}}}{\left( 1+{{t}_{j}} \right)}=\prod\limits_{j=1}^{l}{{}}P\left( {{N}_{j}} \right)</math>
:<math>P\left( {{N}_{1}},...,{{N}_{l}} \right)=\prod\limits_{j=1}^{l}{{}}\frac{{{t}_{j}}^{{{N}_{j}}}}{\left( 1+{{t}_{j}} \right)}=\prod\limits_{j=1}^{l}{{}}P\left( {{N}_{j}} \right)</math> separiert!!
 
separiert !!
 
Dies als Gesamtwahrscheinlichkeit, das System mit der Besetzung <math>\left( {{N}_{1}},...,{{N}_{l}} \right)</math>
 
zu finden !
 
<u>'''Mittlere Besetzungszahl '''</u>im Einteilchenzustand <math>{{E}_{j}}</math>


:
Dies als Gesamtwahrscheinlichkeit, das System mit der Besetzung <math>\left( {{N}_{1}},...,{{N}_{l}} \right)</math> zu finden!


Aus <math>P\left( {{N}_{j}} \right)=\exp \left( {{\Psi }_{j}}-\beta {{E}_{j}}-\alpha {{N}_{j}} \right)</math>
<u>'''Mittlere Besetzungszahl '''</u>im Einteilchenzustand <math>{{E}_{j}}</math>:


mit
Aus <math>P\left( {{N}_{j}} \right)=\exp \left( {{\Psi }_{j}}-\beta {{E}_{j}}-\alpha {{N}_{j}} \right)</math> mit


<math>\begin{align}
:<math>\begin{align}


& {{\Psi }_{j}}=-\ln {{Y}_{j}}=-\ln \left( 1+{{t}_{j}} \right) \\
& {{\Psi }_{j}}=-\ln {{Y}_{j}}=-\ln \left( 1+{{t}_{j}} \right) \\
Zeile 71: Zeile 61:
folgt:
folgt:


<math>\left\langle {{N}_{j}} \right\rangle =\frac{\partial {{\Psi }_{j}}}{\partial \alpha }=\frac{1}{\beta }\frac{\partial }{\partial \mu }\ln {{Y}_{j}}=\frac{{{t}_{j}}}{1+{{t}_{j}}}=\frac{1}{{{t}_{j}}^{-1}+1}</math>
:<math>\left\langle {{N}_{j}} \right\rangle =\frac{\partial {{\Psi }_{j}}}{\partial \alpha }=\frac{1}{\beta }\frac{\partial }{\partial \mu }\ln {{Y}_{j}}=\frac{{{t}_{j}}}{1+{{t}_{j}}}=\frac{1}{{{t}_{j}}^{-1}+1}</math>


Also:
Also:


<math>\Rightarrow \left\langle {{N}_{j}} \right\rangle =\frac{1}{\exp \left( \frac{{{E}_{j}}-\mu }{kT} \right)+1}</math>
{{Gln|<math>\Rightarrow \left\langle {{N}_{j}} \right\rangle =\frac{1}{\exp \left( \frac{{{E}_{j}}-\mu }{kT} \right)+1}</math> Die Fermi-Verteilung! |Fermi-Verteilung}}
 
Die Fermi- Verteilung !


Dies folgt auch explizit aus
Dies folgt auch explizit aus


<math>\left\langle {{N}_{j}} \right\rangle =\sum\limits_{{{N}_{1}}=0}^{1}{{}}\sum\limits_{{{N}_{2}}=0}^{1}{{}}...\left\{ {{N}_{j}}\frac{{{t}_{1}}^{{{N}_{1}}}}{1+{{t}_{1}}}...\frac{{{t}_{j}}^{{{N}_{j}}}}{1+{{t}_{j}}}.... \right\}=\sum\limits_{{{N}_{j}}=0}^{1}{{}}{{N}_{j}}.\frac{{{t}_{j}}^{{{N}_{j}}}}{1+{{t}_{j}}}=\frac{0{{t}_{j}}^{0}+1{{t}_{j}}}{1+{{t}_{j}}}=\frac{{{t}_{j}}}{1+{{t}_{j}}}</math>
:<math>\left\langle {{N}_{j}} \right\rangle =\sum\limits_{{{N}_{1}}=0}^{1}{{}}\sum\limits_{{{N}_{2}}=0}^{1}{{}}...\left\{ {{N}_{j}}\frac{{{t}_{1}}^{{{N}_{1}}}}{1+{{t}_{1}}}...\frac{{{t}_{j}}^{{{N}_{j}}}}{1+{{t}_{j}}}.... \right\}=\sum\limits_{{{N}_{j}}=0}^{1}{{}}{{N}_{j}}.\frac{{{t}_{j}}^{{{N}_{j}}}}{1+{{t}_{j}}}=\frac{0{{t}_{j}}^{0}+1{{t}_{j}}}{1+{{t}_{j}}}=\frac{{{t}_{j}}}{1+{{t}_{j}}}</math>


speziell folgt dies auch aus
speziell folgt dies auch aus


<math>\left\langle {{N}_{j}} \right\rangle =p\left( {{N}_{j}}=1 \right)=\frac{{{t}_{j}}}{1+{{t}_{j}}}</math>
:<math>\left\langle {{N}_{j}} \right\rangle =p\left( {{N}_{j}}=1 \right)=\frac{{{t}_{j}}}{1+{{t}_{j}}}</math>


aber nur wegen Nj = 0,1
aber nur wegen Nj = 0,1


* 2 Möglichkeiten ! -> Mittelwert liegt in der Mitte
* 2 Möglichkeiten! Mittelwert liegt in der Mitte
 
 
Für T -> 0:
 
<math>\left\langle {{N}_{j}} \right\rangle \to \Theta \left( \mu -{{E}_{j}} \right)</math>
 
( Stufenfunktion), sogenannter Quantenlimes !
 
T>0:
 
Aufweichungszone  bei <math>{{E}_{j}}\tilde{\ }\mu </math>
 
der Breite <math>\approx kT</math>
 
<math>{{E}_{j}}-\mu >>kT</math>
 
( sehr hohe Energien)
 
->
 
<math>\left\langle {{N}_{j}} \right\rangle \tilde{\ }\exp \left( -\frac{{{E}_{j}}-\mu }{kT} \right)</math>
 
* die Fermiverteilung nähert sich der Boltzmann- Verteilung an ( klassischer Grenzfall !!)
* keine Berücksichtigung des Pauli- Prinzips mehr !


[[File:Fermi dirac distr.svg|miniatur|rechts besetzte und links unbesetzte Zustände]]
FJ:<nowiki>
Nj:=1/(1+exp((Ej-mue)/Boltz));
Nj:=1/(1+exp((Ej-mue)/Boltz));


Zeile 131: Zeile 97:
mue := 1
mue := 1


* plot(Nj,Ej=0..50);
* plot(Nj,Ej=0..50);</nowiki>]]
;Für T → 0:<math>\left\langle {{N}_{j}} \right\rangle \to \Theta \left( \mu -{{E}_{j}} \right)</math> (Stufenfunktion), sogenannter Quantenlimes!
;T>0: Aufweichungszone  bei <math>{{E}_{j}}\tilde{\ }\mu </math> der Breite <math>\approx kT</math>
 
<math>{{E}_{j}}-\mu >>kT</math> (sehr hohe Energien) → <math>\left\langle {{N}_{j}} \right\rangle \tilde{\ }\exp \left( -\frac{{{E}_{j}}-\mu }{kT} \right)</math>
 
* die Fermiverteilung nähert sich der Boltzmann- Verteilung an (klassischer Grenzfall!!)
* keine Berücksichtigung des Pauli- Prinzips mehr!


Beispiel einer Maxwell- Boltzmann- Verteilung sehr hoher Energien !


'''Gesamte mittlere Teilchenzahl'''


<math>\bar{N}=\sum\limits_{j=1}^{l}{{}}\left\langle {{N}_{j}} \right\rangle </math>
Beispiel einer Maxwell- Boltzmann- Verteilung sehr hoher Energien!


'''thermische Zustandsgleichung'''
;Gesamte mittlere Teilchenzahl:<math>\bar{N}=\sum\limits_{j=1}^{l}{{}}\left\langle {{N}_{j}} \right\rangle </math>


<math>pV=kT\ln Y=kT\sum\limits_{j=1}^{l}{{}}\ln {{Y}_{i}}=kT\sum\limits_{j=1}^{l}{{}}\ln \left( 1+\exp \left( \beta \left( \mu -{{E}_{j}} \right) \right) \right)</math>
;thermische Zustandsgleichung:<math>pV=kT\ln Y=kT\sum\limits_{j=1}^{l}{{}}\ln {{Y}_{i}}=kT\sum\limits_{j=1}^{l}{{}}\ln \left( 1+\exp \left( \beta \left( \mu -{{E}_{j}} \right) \right) \right)</math>


====Energie und Zustandsdichte freier Teilchen====
==Energie und Zustandsdichte freier Teilchen==


Energie- Eigenwerte:
Energie- Eigenwerte:


<math>{{E}_{j}}=\frac{{{{\bar{k}}}^{2}}{{\hbar }^{2}}}{2m}</math>
:<math>{{E}_{j}}=\frac{{{{\bar{k}}}^{2}}{{\hbar }^{2}}}{2m}</math>


Das System sei in einem Würfel V = L³ eingeschlossen !
Das System sei in einem Würfel V = L³ eingeschlossen!


Zyklische Randbedingungen  ( Born - v. Karman):
Zyklische Randbedingungen  (Born - v. Karman):


<math>\begin{align}
:<math>\begin{align}


& {{\Psi }_{j}}\left( {\bar{r}} \right)=\frac{1}{\sqrt{V}}{{e}^{i\bar{k}\bar{r}}} \\
& {{\Psi }_{j}}\left( {\bar{r}} \right)=\frac{1}{\sqrt{V}}{{e}^{i\bar{k}\bar{r}}} \\
Zeile 167: Zeile 138:
Ein Zustand im k- Raum beansprucht also das Volumen:
Ein Zustand im k- Raum beansprucht also das Volumen:


<math>{{\left( \Delta k \right)}^{3}}={{\left( \frac{2\pi }{L} \right)}^{3}}\Delta {{n}_{1}}\Delta {{n}_{2}}\Delta {{n}_{3}}={{\left( \frac{2\pi }{L} \right)}^{3}}=\left( \frac{8{{\pi }^{3}}}{V} \right)</math>
:<math>{{\left( \Delta k \right)}^{3}}={{\left( \frac{2\pi }{L} \right)}^{3}}\Delta {{n}_{1}}\Delta {{n}_{2}}\Delta {{n}_{3}}={{\left( \frac{2\pi }{L} \right)}^{3}}=\left( \frac{8{{\pi }^{3}}}{V} \right)</math>


Dabei wurde jedoch kein Spin berücksichtigt !
Dabei wurde jedoch kein Spin berücksichtigt!


====Thermodynamischer limes ( großes Volumen V):====
====Thermodynamischer limes (großes Volumen V):====


'''Übergang zum Quasikontinuum:'''
'''Übergang zum {{FB|Quasikontinuum}}:'''


<math>\begin{align}
:<math>\begin{align}


& \sum\limits_{j}{{}}\to \left( \frac{V}{8{{\pi }^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}k \\
& \sum\limits_{j}{{}}\to \left( \frac{V}{8{{\pi }^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}k \\
Zeile 189: Zeile 160:
<u>'''Spinentartung:'''</u>
<u>'''Spinentartung:'''</u>


(2s+1)- fache Entartung !
(2s+1)- fache Entartung!


'''Kugelsymmetrisches Integral:'''
'''Kugelsymmetrisches Integral:'''


<math>\to \sum\limits_{j}{{}}\to \left( \frac{V}{8{{\pi }^{3}}{{\hbar }^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}p=\left( \frac{V}{{{h}^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}p=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{{}}^{{}}{{}}{{p}^{2}}dp</math>
:<math>\to \sum\limits_{j}{{}}\to \left( \frac{V}{8{{\pi }^{3}}{{\hbar }^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}p=\left( \frac{V}{{{h}^{3}}} \right)\int_{{}}^{{}}{{}}{{d}^{3}}p=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{{}}^{{}}{{}}{{p}^{2}}dp</math>


<u>'''Großkanonische Zustandssumme:'''</u>
<u>'''Großkanonische Zustandssumme:'''</u>


<math>\begin{align}
:<math>\begin{align}


& \ln Y=\sum\limits_{j}{{}}\ln \left( 1+\xi {{e}^{-\beta {{E}_{j}}}} \right) \\
& \ln Y=\sum\limits_{j}{{}}\ln \left( 1+\xi {{e}^{-\beta {{E}_{j}}}} \right) \\
Zeile 205: Zeile 176:
\end{align}</math>
\end{align}</math>


sogenannte Fugizität !
sogenannte {{FB|Fugizität}}!


<math>\begin{align}
:<math>\begin{align}


& \ln Y=\sum\limits_{j}{{}}\ln \left( 1+\xi {{e}^{-\beta {{E}_{j}}}} \right) \\
& \ln Y=\sum\limits_{j}{{}}\ln \left( 1+\xi {{e}^{-\beta {{E}_{j}}}} \right) \\
Zeile 217: Zeile 188:
'''Partielle Integration:'''
'''Partielle Integration:'''


<math>\begin{align}
:<math>\begin{align}


& \ln Y\approx \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}{{p}^{2}}dp\ln \left( 1+\xi {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right) \\
& \ln Y\approx \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}{{p}^{2}}dp\ln \left( 1+\xi {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right) \\
Zeile 231: Zeile 202:
\end{align}</math>
\end{align}</math>


Mit der Fermi- Verteilung <math>\left\langle N(p) \right\rangle </math>
Mit der Fermi- Verteilung <math>\left\langle N(p) \right\rangle </math>, also:
 
, also:


<math>\ln Y=\frac{2}{3}\beta \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\left\langle N(p) \right\rangle E(p)</math>
:<math>\ln Y=\frac{2}{3}\beta \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\left\langle N(p) \right\rangle E(p)</math>


<u>'''Diskret:'''</u>
<u>'''Diskret:'''</u>


<math>\begin{align}
:<math>\begin{align}


& \ln Y=\frac{2}{3}\beta \sum\limits_{j=1}^{l}{{}}\left\langle {{N}_{j}} \right\rangle {{E}_{j}}=\frac{2}{3}\beta U \\
& \ln Y=\frac{2}{3}\beta \sum\limits_{j=1}^{l}{{}}\left\langle {{N}_{j}} \right\rangle {{E}_{j}}=\frac{2}{3}\beta U \\
Zeile 247: Zeile 216:
\end{align}</math>
\end{align}</math>


Somit haben wir die thermische Zustands-Gleichung
Somit haben wir die '''thermische Zustands-Gleichung'''


<math>pV=kT\ln Y=\frac{2}{3}U=\frac{2}{3}\left\langle {{E}^{ges.}} \right\rangle </math>
{{Gln|<math>pV=kT\ln Y=\frac{2}{3}U=\frac{2}{3}\left\langle {{E}^{ges.}} \right\rangle </math>|thermische Zustands Gleichung}}


'''Bemerkungen'''
{{Bem|1='''Bemerkungen'''


Dies gilt auch für ein klassisches ideales Gas !
Dies gilt auch für ein klassisches ideales Gas!


Klassisch:
Klassisch:


<math>\begin{align}
:<math>\begin{align}


& pV=\bar{N}kT \\
& pV=\bar{N}kT \\
Zeile 267: Zeile 236:
\end{align}</math>
\end{align}</math>


Später werden wir sehen: Das gilt auch für Bose- Verteilung !!
Später werden wir sehen: Das gilt auch für Bose- Verteilung!!


Also unabhängig von der speziellen Statistik !
Also '''unabhängig''' von der speziellen Statistik!}}


====Entartetes Fermi- Gas====
==Entartetes Fermi-Gas==


Klassischer Grenzfall der Fermi- Verteilung:
Klassischer Grenzfall der Fermi- Verteilung:


<math>\left\langle N\left( p \right) \right\rangle =\frac{1}{\left( \frac{1}{\xi }{{e}^{\beta \frac{{{p}^{2}}}{2m}}}+1 \right)}\approx \xi {{e}^{-\beta \frac{{{p}^{2}}}{2m}}}</math>
:<math>\left\langle N\left( p \right) \right\rangle =\frac{1}{\left( \frac{1}{\xi }{{e}^{\beta \frac{{{p}^{2}}}{2m}}}+1 \right)}\approx \xi {{e}^{-\beta \frac{{{p}^{2}}}{2m}}}</math>


( Maxwell- Boltzmann- Verteilung)
(Maxwell- Boltzmann- Verteilung)


für <math>\xi ={{e}^{\frac{\mu }{kT}}}<<1\Rightarrow \mu <0</math>
für <math>\xi ={{e}^{\frac{\mu }{kT}}}<<1\Rightarrow \mu <0</math>


( stark verdünnt)
(stark verdünnt)


* klassischer Limes !
* klassischer Limes!
* Merke positives chemisches Potenzial ist ein QM- Grenzfall !!
* Merke positives chemisches Potenzial ist ein QM- Grenzfall!!


<u>'''Nichtklassischer Grenzfall  ( "Fermi- Entartung ")'''</u>
<u>'''Nichtklassischer Grenzfall  ("Fermi- Entartung ")'''</u>


<u>'''Für  '''</u><math>\xi >>1</math>
<u>'''Für  '''</u><math>\xi >>1</math>


( Grenzfall hoher Dichte !)
(Grenzfall hoher Dichte!)




Zeile 296: Zeile 265:
<u>'''Gesamte Teilchenzahl:'''</u>
<u>'''Gesamte Teilchenzahl:'''</u>


<math>\bar{N}=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\left( {{e}^{\beta \left( \frac{{{p}^{2}}}{2m}-\mu  \right)}}+1 \right)}</math>
:<math>\bar{N}=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\left( {{e}^{\beta \left( \frac{{{p}^{2}}}{2m}-\mu  \right)}}+1 \right)}</math>


<u>'''Innere Energie:'''</u>
<u>'''Innere Energie:'''</u>


<math>U=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{\frac{{{p}^{2}}}{2m}}{\left( {{e}^{\beta \left( \frac{{{p}^{2}}}{2m}-\mu  \right)}}+1 \right)}</math>
:<math>U=\left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{\frac{{{p}^{2}}}{2m}}{\left( {{e}^{\beta \left( \frac{{{p}^{2}}}{2m}-\mu  \right)}}+1 \right)}</math>


<u>'''Substitution'''</u>
<u>'''Substitution'''</u>


<math>\begin{align}
:<math>\begin{align}


& \frac{{{p}^{2}}}{2mkT}=y \\
& \frac{{{p}^{2}}}{2mkT}=y \\
Zeile 320: Zeile 289:
====Definition: Fermi- Dirac- Integral der Ordnung s:====
====Definition: Fermi- Dirac- Integral der Ordnung s:====


<math>\begin{align}
:<math>\begin{align}


& {{F}_{s}}\left( \eta  \right):=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)} \\
& {{F}_{s}}\left( \eta  \right):=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)} \\
Zeile 330: Zeile 299:
<u>'''Entwicklung für'''</u>
<u>'''Entwicklung für'''</u>


<math>\eta >>1\Rightarrow \xi >>1</math>
:<math>\eta >>1\Rightarrow \xi >>1</math>, also Entartung:
 
, also Entartung:


<math>\begin{align}
:<math>\begin{align}


& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right):=\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{1}{s+1}\int_{0}^{\infty }{{}}dy\frac{d}{dy}\left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \\
& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right):=\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{1}{s+1}\int_{0}^{\infty }{{}}dy\frac{d}{dy}\left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \\
Zeile 346: Zeile 313:
weitere Substitution:
weitere Substitution:


<math>\begin{align}
:<math>\begin{align}


& x=y-\eta  \\
& x=y-\eta  \\
Zeile 360: Zeile 327:
:
:


<math>\begin{align}
:<math>\begin{align}


& x=y-\eta  \\
& x=y-\eta  \\
Zeile 372: Zeile 339:
Dies kann man durch Entwicklung von
Dies kann man durch Entwicklung von


<math>{{\left( x+\eta  \right)}^{s+1}}</math>
:<math>{{\left( x+\eta  \right)}^{s+1}}</math>


lösen:
lösen:


<math>{{\left( x+\eta  \right)}^{s+1}}\approx {{\left( \eta  \right)}^{s+1}}+\left( s+1 \right){{\left( \eta  \right)}^{s}}x+\frac{s\left( s+1 \right)}{2}{{\left( \eta  \right)}^{s-1}}{{x}^{2}}+....</math>
:<math>{{\left( x+\eta  \right)}^{s+1}}\approx {{\left( \eta  \right)}^{s+1}}+\left( s+1 \right){{\left( \eta  \right)}^{s}}x+\frac{s\left( s+1 \right)}{2}{{\left( \eta  \right)}^{s-1}}{{x}^{2}}+....</math>


Somit:
Somit:


<math>\begin{align}
:<math>\begin{align}


& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)=\frac{1}{s+1}\int_{-\eta }^{\infty }{{}}dx{{\left( x+\eta  \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}\approx \frac{1}{s+1}\int_{-\infty }^{\infty }{{}}dx{{\left( x+\eta  \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+O\left( {{e}^{-\eta }} \right) \\
& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)=\frac{1}{s+1}\int_{-\eta }^{\infty }{{}}dx{{\left( x+\eta  \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}\approx \frac{1}{s+1}\int_{-\infty }^{\infty }{{}}dx{{\left( x+\eta  \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+O\left( {{e}^{-\eta }} \right) \\
Zeile 392: Zeile 359:
Für die Terme gilt im Einzelnen:
Für die Terme gilt im Einzelnen:


<math>\begin{align}
:<math>\begin{align}


& \int_{-\infty }^{\infty }{{}}dx\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=\left[ \frac{-1}{\left( {{e}^{x}}+1 \right)} \right]_{-\infty }^{\infty }=1 \\
& \int_{-\infty }^{\infty }{{}}dx\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=\left[ \frac{-1}{\left( {{e}^{x}}+1 \right)} \right]_{-\infty }^{\infty }=1 \\
Zeile 404: Zeile 371:
Bleibt Integral I zu lösen:
Bleibt Integral I zu lösen:


<math>\begin{align}
:<math>\begin{align}


& I=\int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=2\int_{0}^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=-2\left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }+4\int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)} \\
& I=\int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=2\int_{0}^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=-2\left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }+4\int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)} \\
Zeile 418: Zeile 385:
Somit ergibt sich das Fermi- Dirac- Integral gemäß
Somit ergibt sich das Fermi- Dirac- Integral gemäß


<math>\begin{align}
:<math>\begin{align}


& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)\approx \frac{{{\left( \eta  \right)}^{s+1}}}{s+1}+\frac{s}{2}{{\left( \eta  \right)}^{s-1}}\frac{{{\pi }^{2}}}{3} \\
& \Gamma \left( s+1 \right){{F}_{s}}\left( \eta  \right)\approx \frac{{{\left( \eta  \right)}^{s+1}}}{s+1}+\frac{s}{2}{{\left( \eta  \right)}^{s-1}}\frac{{{\pi }^{2}}}{3} \\
Zeile 430: Zeile 397:
'''Speziell:'''
'''Speziell:'''


<math>\begin{align}
:<math>\begin{align}


& {{F}_{\frac{1}{2}}}\left( \eta  \right)\approx \frac{2}{\sqrt{\pi }}\left[ \frac{{{\left( \eta  \right)}^{\frac{3}{2}}}}{\frac{3}{2}}+\frac{{{\pi }^{2}}}{12}{{\left( \eta  \right)}^{-\frac{1}{2}}} \right] \\
& {{F}_{\frac{1}{2}}}\left( \eta  \right)\approx \frac{2}{\sqrt{\pi }}\left[ \frac{{{\left( \eta  \right)}^{\frac{3}{2}}}}{\frac{3}{2}}+\frac{{{\pi }^{2}}}{12}{{\left( \eta  \right)}^{-\frac{1}{2}}} \right] \\
Zeile 440: Zeile 407:
Also:
Also:


<math>\begin{align}
:<math>\begin{align}


& \bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\left[ \frac{2}{3}{{\left( \frac{\mu }{kT} \right)}^{\frac{3}{2}}}+\frac{{{\pi }^{2}}}{12}{{\left( \frac{\mu }{kT} \right)}^{-\frac{1}{2}}} \right] \\
& \bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\left[ \frac{2}{3}{{\left( \frac{\mu }{kT} \right)}^{\frac{3}{2}}}+\frac{{{\pi }^{2}}}{12}{{\left( \frac{\mu }{kT} \right)}^{-\frac{1}{2}}} \right] \\
Zeile 450: Zeile 417:
<u>Definition: Fermi- Energie:</u>
<u>Definition: Fermi- Energie:</u>


<math>{{E}_{F}}:=\mu \left( T=0,\bar{N},V \right)</math>
:<math>{{E}_{F}}:=\mu \left( T=0,\bar{N},V \right)</math>


Bei T= 0 Kelvin sind die Zustände mit <math>E<{{E}_{F}}</math>
Bei T= 0 Kelvin sind die Zustände mit <math>E<{{E}_{F}}</math>


voll besetzt, die anderen leer !
voll besetzt, die anderen leer!


Wir können dann <math>\mu \left( T=0,\bar{N},V \right)</math>
Wir können dann <math>\mu \left( T=0,\bar{N},V \right)</math>
Zeile 464: Zeile 431:
eliminieren:
eliminieren:


<u>'''T->0'''</u>
<u>'''T→0'''</u>


<math>\begin{align}
:<math>\begin{align}


& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu  \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu  \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
Zeile 476: Zeile 443:
Für größere Temperaturen T>0 wird nun
Für größere Temperaturen T>0 wird nun


<math>\begin{align}
:<math>\begin{align}


& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
Zeile 488: Zeile 455:
entwickelt und diese Entwicklung dann eingesetzt in die Formel
entwickelt und diese Entwicklung dann eingesetzt in die Formel


<math>\begin{align}
:<math>\begin{align}


& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu  \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
& \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu  \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\
Zeile 504: Zeile 471:
Das heißt, für kT=1 zeigt µ über Ef etwa folgenden verlauf:
Das heißt, für kT=1 zeigt µ über Ef etwa folgenden verlauf:


'''die Kurve wird für höhere Temperaturen immer weiter auseinandergedehnt !'''
'''die Kurve wird für höhere Temperaturen immer weiter auseinandergedehnt!'''


<u>'''Innere Energie'''</u>
<u>'''Innere Energie'''</u>


<math>\begin{align}
:<math>\begin{align}


& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)} \\
& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)} \\
Zeile 518: Zeile 485:
Also:
Also:


<math>\begin{align}
:<math>\begin{align}


& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m \right)}^{\frac{3}{2}}}{{\left( kT \right)}^{\frac{5}{2}}}\left[ \frac{2}{5}{{\left( \frac{\mu }{kT} \right)}^{\frac{5}{2}}}+\frac{{{\pi }^{2}}}{4}{{\left( \frac{\mu }{kT} \right)}^{\frac{1}{2}}} \right] \\
& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m \right)}^{\frac{3}{2}}}{{\left( kT \right)}^{\frac{5}{2}}}\left[ \frac{2}{5}{{\left( \frac{\mu }{kT} \right)}^{\frac{5}{2}}}+\frac{{{\pi }^{2}}}{4}{{\left( \frac{\mu }{kT} \right)}^{\frac{1}{2}}} \right] \\
Zeile 530: Zeile 497:
So dass:
So dass:


<math>\begin{align}
:<math>\begin{align}


& U=\frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( \mu  \right)}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{\mu } \right)}^{2}} \right] \\
& U=\frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( \mu  \right)}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{\mu } \right)}^{2}} \right] \\
Zeile 540: Zeile 507:
Mit
Mit


<math>\bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}}</math>
:<math>\bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}}</math>


folgt:
folgt:


<math>\begin{align}
:<math>\begin{align}


& U\approx \frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( {{E}_{F}} \right)}^{\frac{5}{2}}}{{\left[ 1-\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right] \\
& U\approx \frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( {{E}_{F}} \right)}^{\frac{5}{2}}}{{\left[ 1-\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right] \\
Zeile 558: Zeile 525:
Somit haben wir die '''kalorische Zustandsgleichung'''
Somit haben wir die '''kalorische Zustandsgleichung'''


<math>U\approx \frac{3}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math>
:<math>U\approx \frac{3}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math>


und die '''thermische Zustandsgleichung'''
und die '''thermische Zustandsgleichung'''


<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math>
:<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math>


Das bedeutet:
Das bedeutet:
Zeile 572: Zeile 539:
Beispiel:
Beispiel:


<math>{{E}_{F}}\approx 1eV\Rightarrow T\tilde{\ }{{10}^{4}}K</math>
:<math>{{E}_{F}}\approx 1eV\Rightarrow T\tilde{\ }{{10}^{4}}K</math>


1 eV entspricht 10.000 K !!
1 eV entspricht 10.000 K!!


'''Grund ''' ist das Pauli- Prinzip !!
'''Grund ''' ist das Pauli- Prinzip!!


Also eine effektive Abstoßung der Teilchen ! Dies bewirkt für niedrige Temperaturen den enormen Faktor
Also eine effektive Abstoßung der Teilchen! Dies bewirkt für niedrige Temperaturen den enormen Faktor


<math>\frac{{{E}_{F}}}{kT}</math>
:<math>\frac{{{E}_{F}}}{kT}</math>
 
,
, mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist.
mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist.


Für sehr hohe Temperaturen überwiegt dann der hintere teil, und es gilt:
Für sehr hohe Temperaturen überwiegt dann der hintere teil, und es gilt:
Zeile 588: Zeile 555:
Der Fermidruck ist etwa
Der Fermidruck ist etwa


<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}}=\frac{{{\pi }^{2}}}{6}\bar{N}kT\left( \frac{kT}{{{E}_{F}}} \right)</math>
:<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}}=\frac{{{\pi }^{2}}}{6}\bar{N}kT\left( \frac{kT}{{{E}_{F}}} \right)</math>


Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor <math>\left( \frac{kT}{{{E}_{F}}} \right)</math>
Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor <math>\left( \frac{kT}{{{E}_{F}}} \right)</math>
Zeile 594: Zeile 561:
!
!


<u>'''Spezifische Wärme'''</u>
== Spezifische Wärme ==


<math>\begin{align}
 
:<math>\begin{align}


& {{C}_{V}}={{\left( \frac{\partial U}{\partial T} \right)}_{V}}=\frac{{{\pi }^{2}}}{2}\bar{N}k\left( \frac{kT}{{{E}_{F}}} \right) \\
& {{C}_{V}}={{\left( \frac{\partial U}{\partial T} \right)}_{V}}=\frac{{{\pi }^{2}}}{2}\bar{N}k\left( \frac{kT}{{{E}_{F}}} \right) \\
Zeile 608: Zeile 576:
kleiner als bei idealen gasen.
kleiner als bei idealen gasen.


Bei T ~ 300 K ist dies 1/ 40 !
Bei T ~ 300 K ist dies 1/ 40!


ideales Gas:
ideales Gas:


<math>{{c}_{V}}=\frac{3}{2}R</math>
:<math>{{c}_{V}}=\frac{3}{2}R</math>


Physikalsicher Grund:
Physikalsicher Grund:
Zeile 618: Zeile 586:
Nur die Teilchen in der " Aufweichungszone"
Nur die Teilchen in der " Aufweichungszone"


<math>{{E}_{F}}-kT<E<{{E}_{F}}+kT</math>
:<math>{{E}_{F}}-kT<E<{{E}_{F}}+kT</math>


tragen  zur spezifischen Wärme bei , da nur sie in freie Zustände thermisch angeregt werden könen :
tragen  zur spezifischen Wärme bei, da nur sie in freie Zustände thermisch angeregt werden könen :


Zahl:
Zahl:


<math>\Delta N\tilde{\ }\bar{N}\frac{kT}{{{E}_{F}}}</math>
:<math>\Delta N\tilde{\ }\bar{N}\frac{kT}{{{E}_{F}}}</math>


jedes hat Energie ~ kT
jedes hat Energie ~ kT


<math>\begin{align}
:<math>\begin{align}


& \Rightarrow \Delta U\tilde{\ }\bar{N}\frac{{{\left( kT \right)}^{2}}}{{{E}_{F}}} \\
& \Rightarrow \Delta U\tilde{\ }\bar{N}\frac{{{\left( kT \right)}^{2}}}{{{E}_{F}}} \\
Zeile 640: Zeile 608:
<u>Beispiele für entartete Fermigase</u>
<u>Beispiele für entartete Fermigase</u>


* Elektronen in Metallen -> hohe Dichten !
* Elektronen in Metallen hohe Dichten!
* Elektronen in Halbleitern, bei sehr tiefen Temperaturen oder hoher Dotierung!
* Elektronen in Halbleitern, bei sehr tiefen Temperaturen oder hoher Dotierung!


====Nichtenatartetes fermigas====
==Nichtenatartetes fermigas==


verdünntes, nichtrelativistisches Quantengas !
verdünntes, nichtrelativistisches Quantengas!


z.B. Elektronen in Halbleitern im Normalbereich !
z.B. Elektronen in Halbleitern im Normalbereich!


'''Voraussetzung:'''
'''Voraussetzung:'''


<math>\xi ={{e}^{\frac{\mu }{kT}}}<<1</math>
:<math>\xi ={{e}^{\frac{\mu }{kT}}}<<1</math>


das heißt:
das heißt:


<math>\begin{align}
:<math>\begin{align}


& \mu <0 \\
& \mu <0 \\
Zeile 667: Zeile 635:
:
:


<math>\begin{align}
:<math>\begin{align}


& {{F}_{s}}\left( \eta  \right)=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{{{e}^{y-\eta }}+1} \\
& {{F}_{s}}\left( \eta  \right)=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{{{e}^{y-\eta }}+1} \\
Zeile 683: Zeile 651:
'''Dabei ist'''
'''Dabei ist'''


<math>{{F}_{s}}\left( \eta  \right)={{e}^{\frac{\mu }{kT}}}</math>
:<math>{{F}_{s}}\left( \eta  \right)={{e}^{\frac{\mu }{kT}}}</math>


das Boltzman- Limit mit der Quantenkorrektur  <math>-{{e}^{2\frac{\mu }{kT}}}\frac{1}{{{2}^{s+1}}}</math>
das Boltzman- Limit mit der Quantenkorrektur  <math>-{{e}^{2\frac{\mu }{kT}}}\frac{1}{{{2}^{s+1}}}</math>
Zeile 689: Zeile 657:
Also:
Also:


<math>\bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\frac{\sqrt{\pi }}{2}{{F}_{\frac{1}{2}}}\left( \eta  \right)=V{{N}_{C}}{{F}_{\frac{1}{2}}}\left( \frac{\mu }{kT} \right)</math>
:<math>\bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\frac{\sqrt{\pi }}{2}{{F}_{\frac{1}{2}}}\left( \eta  \right)=V{{N}_{C}}{{F}_{\frac{1}{2}}}\left( \frac{\mu }{kT} \right)</math>


mit der Entartungskonzentration
mit der Entartungskonzentration


<math>{{N}_{C}}:=\left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}</math>
:<math>{{N}_{C}}:=\left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}</math>


Also genähert:
Also genähert:


<math>\bar{N}=V{{N}_{C}}{{F}_{\frac{1}{2}}}\left( \frac{\mu }{kT} \right)\approx V{{N}_{C}}{{e}^{\frac{\mu }{kT}}}\left[ 1-{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{\frac{3}{2}}}} \right]</math>
:<math>\bar{N}=V{{N}_{C}}{{F}_{\frac{1}{2}}}\left( \frac{\mu }{kT} \right)\approx V{{N}_{C}}{{e}^{\frac{\mu }{kT}}}\left[ 1-{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{\frac{3}{2}}}} \right]</math>


Bei vollständiger Nichtentartung:
Bei vollständiger Nichtentartung:


<math>\begin{align}
:<math>\begin{align}


& \frac{{\bar{N}}}{V}\approx {{N}_{C}}{{e}^{\frac{\mu }{kT}}} \\
& \frac{{\bar{N}}}{V}\approx {{N}_{C}}{{e}^{\frac{\mu }{kT}}} \\
Zeile 711: Zeile 679:
\end{align}</math>
\end{align}</math>


Die klassische Maxwell- Boltzmann- Verteilung ( vergl. S. 101)
Die klassische Maxwell- Boltzmann- Verteilung (vergl. S. 101)


<math>\begin{align}
:<math>\begin{align}


& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\frac{3\sqrt{\pi }}{4}{{F}_{\frac{3}{2}}}\left( \frac{\mu }{kT} \right) \\
& U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\frac{3\sqrt{\pi }}{4}{{F}_{\frac{3}{2}}}\left( \frac{\mu }{kT} \right) \\
Zeile 728: Zeile 696:


# Näherung:
# Näherung:
<math>\bar{N}=V{{N}_{C}}\xi </math>
:<math>\bar{N}=V{{N}_{C}}\xi </math>


# Näherung
# Näherung
<math>\begin{align}
:<math>\begin{align}


& \bar{N}=V{{N}_{C}}\xi \left[ 1-{{2}^{-\frac{3}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}} \right] \\
& \bar{N}=V{{N}_{C}}\xi \left[ 1-{{2}^{-\frac{3}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}} \right] \\
Zeile 741: Zeile 709:
\end{align}</math>
\end{align}</math>


<math>U\approx \frac{3}{2}kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>
:<math>U\approx \frac{3}{2}kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>


Dabei wurden alle Terme der Ordnung <math>{{\left( \frac{{\bar{N}}}{V{{N}_{C}}(T)} \right)}^{2}}</math>
Dabei wurden alle Terme der Ordnung <math>{{\left( \frac{{\bar{N}}}{V{{N}_{C}}(T)} \right)}^{2}}</math>


weggenähert !
weggenähert!


Also:
Also:
Zeile 751: Zeile 719:
kalorische Zustandsgleichung
kalorische Zustandsgleichung


<math>U\approx \frac{3}{2}kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>
:<math>U\approx \frac{3}{2}kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>


mit der Quantenkorrektur <math>O\left( \frac{{\bar{N}}}{V{{N}_{C}}(T)} \right)</math>
mit der Quantenkorrektur <math>O\left( \frac{{\bar{N}}}{V{{N}_{C}}(T)} \right)</math>
Zeile 759: Zeile 727:
'''thermische Zustandsgleichung'''
'''thermische Zustandsgleichung'''


<math>pV=\frac{2}{3}U\approx kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>
:<math>pV=\frac{2}{3}U\approx kT\bar{N}\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{\bar{N}}}{V{{N}_{C}}(T)} \right]</math>


Also:
Also:


<math>pv\approx RT\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{{N}_{A}}}{v{{N}_{C}}(T)} \right]</math>
:<math>pv\approx RT\left[ 1+{{2}^{-\frac{5}{2}}}\frac{{{N}_{A}}}{v{{N}_{C}}(T)} \right]</math>


Dabei ist
Dabei ist


<math>pv\approx RT</math>
:<math>pv\approx RT</math>


die Zustandsgleichung des klassischen idealen Gases und <math>RT{{2}^{-\frac{5}{2}}}\frac{{{N}_{A}}}{v{{N}_{C}}(T)}</math>
die Zustandsgleichung des klassischen idealen Gases und <math>RT{{2}^{-\frac{5}{2}}}\frac{{{N}_{A}}}{v{{N}_{C}}(T)}</math>


eine Erhöhung des klassischen Drucks durch die Fermi- Abstoßung !
eine Erhöhung des klassischen Drucks durch die Fermi- Abstoßung!


'''Nebenbemerkung:'''
'''Nebenbemerkung:'''


Mit der '''thermischen Wellenlänge '''<math>\lambda :={{\left( \frac{{{h}^{2}}}{2\pi mkT} \right)}^{\frac{1}{2}}}</math>
Mit der {{FB|thermischen Wellenlänge}} <math>\lambda :={{\left( \frac{{{h}^{2}}}{2\pi mkT} \right)}^{\frac{1}{2}}}</math> entsprechend der {{FB|de Broglie-Wellenlänge}} für <math>\frac{{{k}^{2}}{{\hbar }^{2}}}{2m}\tilde{\ }kT\Rightarrow \lambda ={{\left( \frac{{{h}^{2}}}{2mkT} \right)}^{\frac{1}{2}}}</math>
 
entsprechend der de Broglie- Wellenlänge für <math>\frac{{{k}^{2}}{{\hbar }^{2}}}{2m}\tilde{\ }kT\Rightarrow \lambda ={{\left( \frac{{{h}^{2}}}{2mkT} \right)}^{\frac{1}{2}}}</math>


E= kT also, schreibt man:
E= kT also, schreibt man:


<math>{{N}_{C}}=\frac{2s+1}{{{\lambda }^{3}}}</math>
:<math>{{N}_{C}}=\frac{2s+1}{{{\lambda }^{3}}}</math>
 
[["category":"uncategorized"]]

Aktuelle Version vom 9. August 2011, 14:25 Uhr




  1. Teilchen- Zustände sind die Eigenzustände zur 1- Teilchen- Energie Ei

Großkanonischer Statistischer Operator:

ρ^=Y1exp(β(H^μN^))

Die Wahrscheinlichkeit, das System in einem bestimmten Zustand zu finden ist gleich dem Erwartungswert des statistischen Operators in diesem Zustand:

Also für den Vielteilchenzustand |α:

Eαges.=j=1lEjNj

mit der Einteilchenenergie Ej und den Besetzungszahlen Nj

Diese Wahrscheinlichkeit ist:

Pα=α|ρ^|α=Y1α|exp(β(H^μN^))|α=Y1exp(βj=1l(NjEjμNj))

Dies ist ein Ergebnis für einen Zustand!

Die Großkanonsiche Zustandsumme Y gewinnt man, indem man über alle möglichen Vielteilchenzustände noch summiert, also:

Y=N1...Nlexp(βj=1l(NjEjμNj))=j=1l(Njexp(β(NjEjμNj)))

Jetzt muss bei der Auswertung die unterschiedliche Teilchenart berücksichtigt werden, nämlich in der Summation über Nj. Handelt es sich um Fermionen, so wird nur bis 1 summiert. Handelt es sich um Bosonen, so wird bis unendlich summiert!

Fermionen

Y=N1...Nl=01exp(βj=1l(NjEjμNj))=j=1l(Nj=01exp(β(NjEjμNj)))=j=1l(Nj=01tjNj)tj:=exp(β(Ejμ))Y=j=1l(1+tj)=j=1lYj

Also folgt:

P(N1,...,Nl)=j=1ltjNj(1+tj)=j=1lP(Nj) separiert!!

Dies als Gesamtwahrscheinlichkeit, das System mit der Besetzung (N1,...,Nl) zu finden!

Mittlere Besetzungszahl im Einteilchenzustand Ej:

Aus P(Nj)=exp(ΨjβEjαNj) mit

Ψj=lnYj=ln(1+tj)α=βμ

folgt:

Nj=Ψjα=1βμlnYj=tj1+tj=1tj1+1

Also:


Nj=1exp(EjμkT)+1 Die Fermi-Verteilung!


Dies folgt auch explizit aus

Nj=N1=01N2=01...{Njt1N11+t1...tjNj1+tj....}=Nj=01Nj.tjNj1+tj=0tj0+1tj1+tj=tj1+tj

speziell folgt dies auch aus

Nj=p(Nj=1)=tj1+tj

aber nur wegen Nj = 0,1

  • 2 Möglichkeiten! → Mittelwert liegt in der Mitte
rechts besetzte und links unbesetzte Zustände

FJ: Nj:=1/(1+exp((Ej-mue)/Boltz)); 1 Nj := --------------------- 1 + exp(1/5 Ej - 1/5) > Boltz:=5; Boltz := 5 > mue:=1; mue := 1 * plot(Nj,Ej=0..50);]]

Für T → 0
NjΘ(μEj) (Stufenfunktion), sogenannter Quantenlimes!
T>0
Aufweichungszone bei Ej~μ der Breite kT

Ejμ>>kT (sehr hohe Energien) → Nj~exp(EjμkT)

  • die Fermiverteilung nähert sich der Boltzmann- Verteilung an (klassischer Grenzfall!!)
  • keine Berücksichtigung des Pauli- Prinzips mehr!


Beispiel einer Maxwell- Boltzmann- Verteilung sehr hoher Energien!

Gesamte mittlere Teilchenzahl
N¯=j=1lNj
thermische Zustandsgleichung
pV=kTlnY=kTj=1llnYi=kTj=1lln(1+exp(β(μEj)))

Energie und Zustandsdichte freier Teilchen

Energie- Eigenwerte:

Ej=k¯222m

Das System sei in einem Würfel V = L³ eingeschlossen!

Zyklische Randbedingungen (Born - v. Karman):

Ψj(r¯)=1Veik¯r¯kaL=2πnana=±1,±2,±3....a=1,2,3

Ein Zustand im k- Raum beansprucht also das Volumen:

(Δk)3=(2πL)3Δn1Δn2Δn3=(2πL)3=(8π3V)

Dabei wurde jedoch kein Spin berücksichtigt!

Thermodynamischer limes (großes Volumen V):

Übergang zum Quasikontinuum:

j(V8π3)d3kp¯=k¯j(V8π33)d3p=(Vh3)d3p

In Übereinstimmung mit Kapitel 4.1, Seite 100

Spinentartung:

(2s+1)- fache Entartung!

Kugelsymmetrisches Integral:

j(V8π33)d3p=(Vh3)d3p=(2s+1)(Vh3)4πp2dp

Großkanonische Zustandssumme:

lnY=jln(1+ξeβEj)ξ:=eβμ

sogenannte Fugizität!

lnY=jln(1+ξeβEj)(2s+1)(Vh3)4π0p2dpln(1+ξeβEj)=(2s+1)(Vh3)4π0p2dpln(1+ξeβp22m)

Partielle Integration:

lnY(2s+1)(Vh3)4π0p2dpln(1+ξeβp22m)=(2s+1)(Vh3)4π[(p33ln(1+ξeβp22m))|00p33βpmξeβp22m(1+ξeβp22m)dp](p33ln(1+ξeβp22m))|0=0lnY=(2s+1)(Vh3)4π0p33βpmξeβp22m(1+ξeβp22m)dp=23(2s+1)(Vh3)4π0dpp2βp22m(1ξeβp22m+1)=23β(2s+1)(Vh3)4π0dpp2N(p)p22m

Mit der Fermi- Verteilung N(p), also:

lnY=23β(2s+1)(Vh3)4π0dpp2N(p)E(p)

Diskret:

lnY=23βj=1lNjEj=23βUU=Eges.

Somit haben wir die thermische Zustands-Gleichung


pV=kTlnY=23U=23Eges.



Bemerkungen

Dies gilt auch für ein klassisches ideales Gas!

Klassisch:

pV=N¯kTU=32N¯kTpV=23U

Später werden wir sehen: Das gilt auch für Bose- Verteilung!!

Also unabhängig von der speziellen Statistik!


Entartetes Fermi-Gas

Klassischer Grenzfall der Fermi- Verteilung:

N(p)=1(1ξeβp22m+1)ξeβp22m

(Maxwell- Boltzmann- Verteilung)

für ξ=eμkT<<1μ<0

(stark verdünnt)

  • klassischer Limes!
  • Merke positives chemisches Potenzial ist ein QM- Grenzfall!!

Nichtklassischer Grenzfall ("Fermi- Entartung ")

Für ξ>>1

(Grenzfall hoher Dichte!)


Gesamte Teilchenzahl:

N¯=(2s+1)(Vh3)4π0dpp21(eβ(p22mμ)+1)

Innere Energie:

U=(2s+1)(Vh3)4π0dpp2p22m(eβ(p22mμ)+1)

Substitution

p22mkT=ypdp=mkTdyμkT=η=αN¯=(2s+1)2(Vh3)4π(2mkT)320dyy12(eyη+1)U=(2s+1)2(Vh3)4π(2mkT)32kT0dyy32(eyη+1)

Definition: Fermi- Dirac- Integral der Ordnung s:

Fs(η):=1Γ(s+1)0dyys(eyη+1)s>0

Entwicklung für

η>>1ξ>>1, also Entartung:
Γ(s+1)Fs(η):=0dyys(eyη+1)=1s+10dyddy(ys+1)1(eyη+1)=1s+1[(ys+1)1(eyη+1)]|0+1s+10dyys+1eyη(eyη+1)21s+1[(ys+1)1(eyη+1)]|0=0

weitere Substitution:

x=yηΓ(s+1)Fs(η)=1s+10dyys+1eyη(eyη+1)2=1s+1ηdx(x+η)s+1ex(ex+1)2η>>1

Somit kann man die Grenzen erweitern, da η>>1

x=yηΓ(s+1)Fs(η)=1s+1ηdx(x+η)s+1ex(ex+1)21s+1dx(x+η)s+1ex(ex+1)2+O(eη)O(eη)<<1

Dies kann man durch Entwicklung von

(x+η)s+1

lösen:

(x+η)s+1(η)s+1+(s+1)(η)sx+s(s+1)2(η)s1x2+....

Somit:

Γ(s+1)Fs(η)=1s+1ηdx(x+η)s+1ex(ex+1)21s+1dx(x+η)s+1ex(ex+1)2+O(eη)1s+1dx(η)s+1ex(ex+1)2+dx(η)sxex(ex+1)2+s2dx(η)s1x2ex(ex+1)2=(η)s+1s+1dxex(ex+1)2+(η)sdxxex(ex+1)2+s2(η)s1dxx2ex(ex+1)2

Für die Terme gilt im Einzelnen:

dxex(ex+1)2=[1(ex+1)]=1dxxex(ex+1)2=0daIntegrandungeradedxx2ex(ex+1)2:=I

Bleibt Integral I zu lösen:

I=dxx2ex(ex+1)2=20dxx2ex(ex+1)2=2[x21(ex+1)]0+40dxx(ex+1)[x21(ex+1)]0=00dxx(ex+1)=π212I=π23

Somit ergibt sich das Fermi- Dirac- Integral gemäß

Γ(s+1)Fs(η)(η)s+1s+1+s2(η)s1π23Γ(s+1)Fs(η)=(η)s+1s+1+s2(η)s1π23+O((η)s3)Fs(η)=1Γ(s+1)[(η)s+1s+1+sπ26(η)s1+O((η)s3)]

Speziell:

F12(η)2π[(η)3232+π212(η)12]F32(η)43π[(η)5252+π24(η)12]

Also:

N¯=(2s+1)2(Vh3)4π(2mkT)320dyy12(eyη+1)=(2s+1)2(Vh3)4π(2mkT)32[23(μkT)32+π212(μkT)12]N¯=23(2s+1)2(Vh3)4π(2mμ)32[1+π28(kTμ)2]

Definition: Fermi- Energie:

EF:=μ(T=0,N¯,V)

Bei T= 0 Kelvin sind die Zustände mit E<EF

voll besetzt, die anderen leer!

Wir können dann μ(T=0,N¯,V)

durch EF

und N¯

eliminieren:

T→0

N¯=23(2s+1)2(Vh3)4π(2mμ)32[1+π28(kTμ)2]=23(2s+1)2(Vh3)4π(2mEF)32

Für größere Temperaturen T>0 wird nun

N¯=23(2s+1)2(Vh3)4π(2mEF)32

in niedrigster Ordnung in kTEF

entwickelt und diese Entwicklung dann eingesetzt in die Formel

N¯=23(2s+1)2(Vh3)4π(2mμ)32[1+π28(kTμ)2]=23(2s+1)2(Vh3)4π(2mEF)32(μ)32[1+π28(kTμ)2](EF)32μEF[1+π28(kTμ)2]23

Jetzt wird in niedrigster Ordnung in kTEF

entwickelt:

Das heißt, für kT=1 zeigt µ über Ef etwa folgenden verlauf:

die Kurve wird für höhere Temperaturen immer weiter auseinandergedehnt!

Innere Energie

U=(2s+1)2(Vh3)4π(2mkT)32kT0dyy32(eyη+1)F32(η)43π[(η)5252+π24(η)12]

Also:

U=(2s+1)2(Vh3)4π(2m)32(kT)52[25(μkT)52+π24(μkT)12]=25(Vh3)4π(2s+1)2(2m)32(μ)52[1+52π24(kTμ)2]

Verwende:

So dass:

U=25(Vh3)4π(2s+1)2(2m)32(μ)52[1+52π24(kTμ)2]25(Vh3)4π(2s+1)2(2m)32(EF)52[1π212(kTEF)2]52[1+52π24(kTEF)2]

Mit

N¯=23(2s+1)2(Vh3)4π(2mEF)32

folgt:

U25(Vh3)4π(2s+1)2(2m)32(EF)52[1π212(kTEF)2]52[1+52π24(kTEF)2]25(Vh3)4π(2s+1)2(2m)32(EF)5235N¯EF[1π212(kTEF)2]52[1+52π24(kTEF)2]1+5π212(kTEF)2U35N¯EF[1+5π212(kTEF)2]

Somit haben wir die kalorische Zustandsgleichung

U35N¯EF[1+5π212(kTEF)2]

und die thermische Zustandsgleichung

pV=23U25N¯EF[1+5π212(kTEF)2]

Das bedeutet:

Der Druck des fermigases ist um einen Faktor EFkT

größer als in klassischen idealen Gasen

Beispiel:

EF1eVT~104K

1 eV entspricht 10.000 K!!

Grund ist das Pauli- Prinzip!!

Also eine effektive Abstoßung der Teilchen! Dies bewirkt für niedrige Temperaturen den enormen Faktor

EFkT

,

mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist.

Für sehr hohe Temperaturen überwiegt dann der hintere teil, und es gilt:

Der Fermidruck ist etwa

pV=23U25N¯EF5π212(kTEF)2=π26N¯kT(kTEF)

Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor (kTEF)

!

Spezifische Wärme

CV=(UT)V=π22N¯k(kTEF)cV=π22R(kTEF)~T

Die Wärmekapazität ist sage und schreibe um den Faktor (kTEF)

kleiner als bei idealen gasen.

Bei T ~ 300 K ist dies 1/ 40!

ideales Gas:

cV=32R

Physikalsicher Grund:

Nur die Teilchen in der " Aufweichungszone"

EFkT<E<EF+kT

tragen zur spezifischen Wärme bei, da nur sie in freie Zustände thermisch angeregt werden könen :

Zahl:

ΔN~N¯kTEF

jedes hat Energie ~ kT

ΔU~N¯(kT)2EFCv~N¯k(kT)EF


Beispiele für entartete Fermigase

  • Elektronen in Metallen → hohe Dichten!
  • Elektronen in Halbleitern, bei sehr tiefen Temperaturen oder hoher Dotierung!

Nichtenatartetes fermigas

verdünntes, nichtrelativistisches Quantengas!

z.B. Elektronen in Halbleitern im Normalbereich!

Voraussetzung:

ξ=eμkT<<1

das heißt:

μ<0η=μkT<0

Entwicklung der Fermi- Dirac- Integrale nach Potenzen von ξ=eμkT<<1

Fs(η)=1Γ(s+1)0dyyseyη+1=1Γ(s+1)0dyysξey1+ξey1Γ(s+1)[ξ0dyyseyξ20dyyse2y+....]0dyysey=Γ(s+1)0dyyse2y=12s+10dzzsez=12s+1Γ(s+1)Fs(η)[ξξ212s+1+....][ξξ212s+1]=eμkT[1eμkT12s+1]

Dabei ist

Fs(η)=eμkT

das Boltzman- Limit mit der Quantenkorrektur e2μkT12s+1

Also:

N¯=(2s+1)2(Vh3)4π(2mkT)32π2F12(η)=VNCF12(μkT)

mit der Entartungskonzentration

NC:=(2s+1)(2πmkTh2)32

Also genähert:

N¯=VNCF12(μkT)VNCeμkT[1eμkT1232]

Bei vollständiger Nichtentartung:

N¯VNCeμkTeμkT<<1N¯V<<NC

Die klassische Maxwell- Boltzmann- Verteilung (vergl. S. 101)

U=(2s+1)2(Vh3)4π(2mkT)32kT0dyy32(eyη+1)=(2s+1)2(Vh3)4π(2mkT)32kT3π4F32(μkT)U=VNC32kTF32(μkT)UVNC32kTeμkT[1eμkT1252]

Elimination von μ

durch N¯=VNCF12(μkT)VNCξ[1ξ232]

  1. Näherung:
N¯=VNCξ
  1. Näherung
N¯=VNCξ[1232N¯VNC]ξ=eμkTN¯VNC[1+232N¯VNC]UVNC32kTeμkT[1eμkT1252]32kTN¯[1+232N¯VNC][11252N¯VNC]
U32kTN¯[1+252N¯VNC(T)]

Dabei wurden alle Terme der Ordnung (N¯VNC(T))2

weggenähert!

Also:

kalorische Zustandsgleichung

U32kTN¯[1+252N¯VNC(T)]

mit der Quantenkorrektur O(N¯VNC(T))

32kTN¯252N¯VNC(T)

thermische Zustandsgleichung

pV=23UkTN¯[1+252N¯VNC(T)]

Also:

pvRT[1+252NAvNC(T)]

Dabei ist

pvRT

die Zustandsgleichung des klassischen idealen Gases und RT252NAvNC(T)

eine Erhöhung des klassischen Drucks durch die Fermi- Abstoßung!

Nebenbemerkung:

Mit der thermischen Wellenlänge λ:=(h22πmkT)12 entsprechend der de Broglie-Wellenlänge für k222m~kTλ=(h22mkT)12

E= kT also, schreibt man:

NC=2s+1λ3