Gamma-Zerfall: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{ScriptProf|Kapitel=13|Abschnitt=0|Prof=Prof. Dr. P. Zimmermann|Thema=Kern- und Strahlungsphysik|Schreiber=Moritz Schubotz}}</noinclude>“
 
 
(7 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
<noinclude>{{ScriptProf|Kapitel=13|Abschnitt=0|Prof=Prof. Dr. P. Zimmermann|Thema=Kern- und Strahlungsphysik|Schreiber=Moritz Schubotz}}</noinclude>
<noinclude>{{ScriptProf|Kapitel=13|Abschnitt=0|Prof=Prof. Dr. P. Zimmermann|Thema=Kern- und Strahlungsphysik|Schreiber=Moritz Schubotz}}</noinclude>
[[Datei:12.1.gamma.schema.png|miniatur|zentriert|hochkant=3|<math>\gamma</math>-Zerfall]]
==Erhaltungssätze==
;Energie:
:<math>{{E}_{i}}-{{E}_{k}}=\hbar \omega </math>
(genauer abzüglich der Rückstoßenergie E<sub>R</sub> wegen
:<math>{{P}_{i}}=0\to {{P}_{k}}=E/c\to {{E}_{R}}=p_{k}^{2}/2M={{E}^{2}}/2m{{c}^{2}}</math>
z.B:
<math>E=1MeV,\quad A=50</math> also
<math>{{E}_{R}}\approx \frac{{{\left( {{10}^{6}}eV \right)}^{2}}}{2\times 50\times {{10}^{9}}eV}\approx 10eV</math>
;Drehimpuls:<math>\vec I_i - \vec I_k = \vec L</math> der vom <math>\gamma</math>-Quant weggeführte Drehimpuls, Multipolentwicklung
;Parität:<math>{{P}_{i}}{{P}_{k}}={{P}_{str}}</math> Parität der entsprechenden Multipolstrahlung
Multipolordnung <math>2^L</math>:
;L=1:Dipol
;L=2:Quadrupol
;L=3:Oktupol
...etc.
Elektrische und magnetische Multipole:
*E1 E2 E3 ...
*M1 M2 M3 ...
mit unterschiedlicher Parität:
*elektrische <math>E1^- E2^+ E3^- \dots (-1)^L</math>
*magnetische <math>M1^- M2^+ M3^- \dots (-1)^{L+1}</math>
Danach wird beispielsweise für den Übergang 2<sup>+</sup> -->  0<sup>+</sup> nur E2-Strahlung
emittiert, während für einen <math>5/2^- \to 3/2^+</math>-Übergang theoretisch
M4-, E3-, M2- und E1-Strahlung auftreten könnte. Da die Übergangswahrscheinlichkeit
für wachsende Multipolordnung sehr stark abnimmt,
kommt in der Praxis nur die niedrigste Ordnung - hier nur
E1 - vor.
==Abschätzung der übergangswahrscheinlichkeiten==
Allgemein für die pro zeiteinheit abgestrahlte Energie einer mit
der Beschleunigung b bewegten Ladung e:
:<math>\frac{dE}{dt}=\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{2{{e}^{2}}}{3{{c}^{3}}}{{b}^{2}}</math>
Für einen '''elektischen Dipol''' <math>er(t) = e r_0 \cos\omega t</math> gilt für die mittlere abgestrahlte Energie wegen <math>b = \omega^2 \cos \omega t</math> und <math>b^2=\frac{1}{2}\omega^4 r_0^2</math>
<math>\frac{d\bar{E}}{dt}=\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{{{e}^{2}}}{3{{c}^{3}}}{{\omega }^{4}}r_{0}^{2}</math>
Die pro Zeiteinheit abgestrahlten photonen erhält man nach Division
von <math>\hbar\omega</math> zu:
:<math>A=\frac{d\bar{E}}{dt}/\hbar \omega =\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{1}{3}\frac{1}{\hbar }{{\left( \frac{\omega }{c} \right)}^{3}}{{\left( e{{r}_{0}} \right)}^{2}}=\underbrace{\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{{{e}^{2}}}{\hbar }}_{\alpha =\frac{1}{137}}\omega {{\left( \frac{\omega {{r}_{0}}}{c} \right)}^{2}}</math>
Für eine grobe Abschätzung ersetzt man <math>r_0</math> durch den Kernradius R.
Damit ist die entscheidende Größe
<math>\frac{\omega R}{c}=\frac{R}{\lambda }</math>
das Verhältnis von Kernradius
zur Wellenlänge/2<math>\pi</math> der Strahlung. Mit <math>R \approx 1,2 \sqrt[3]{A}10^{-15} m</math>
und <math>\bar\lambda \approx 200 \times10^{-15} m/E[MeV]</math> ergibt sich für mittelschwere Kerne und <math>E \approx 1 MeV</math> für dieses Verhältnis <math>R/\lambda \approx 10^-2</math>. Wegen <math>\omega \approx 10^{21}s^{-1}</math>
für <math>E \approx 1 MeV</math> erhält man für die übergangswahrscheinlichkeit <math>A \approx \frac{1}{137}10^{21-4}s^{-1} \approx 10^{15}s^{-1}</math>. Für höhere elektrische Multipole wird der Faktor
<math>{{\left( \frac{\omega R}{c} \right)}^{2}}</math>
durch
<math>{{\left( \frac{\omega R}{c} \right)}^{2L}}</math>
ersetzt. Aufeinanderfolgende Multipolordnungen
unterscheiden sich also bei <math>E \approx 1 MeV</math> um ca. 4 - 5
Größenordnungen.
Für '''magnetische Dipolstrahlung''' wird eR durch <math>\mu_K</math> ersetzt. Magnetische und elektrische Dipolübergänge unterscheiden sich demnachbei den Übergangswahrscheinlichkeiten um den Faktor <math>(\mu_K/eR)^2</math>.
Aus der Unschärferelation <math>Rm_v \approx \hbar</math> erhält man für diesen Faktor
<math>{{\left( \frac{e\hbar }{2{{m}_{p}}c}/eR \right)}^{2}}\approx {{\left( \frac{v}{c} \right)}^{2}}\approx {{10}^{-2}}-{{10}^{-3}}</math>. Für höhere magnetische Multipolordnungen
wird <math>\mu_K</math> durch <math>\mu_L\cdot R^{L-1}</math> ersetzt, so daß dieser Faktor auch für höhere Multipolordnungen gilt.
Zusammenfassend:
<math>\begin{align}
  & \frac{A(ML)}{A(EL)}\approx {{\left( \frac{v}{c} \right)}^{2}} \\
& \frac{A(EL+1)}{A(EL)}\approx {{\left( \frac{R}{{\bar \lambda}} \right)}^{2}} \\
\end{align}</math>
Die experimentellen Werte sind für E1 um ca. <math>10^3 - 10^6</math> langsamer,
für E2 um ca <math>10^2</math> schneller und für die übrigen Übergänge um ca. <math>10^1
- 10^2</math> langsamer als die (Blatt-Weisskopf)-Abschätzungen.
Bei hohen Kernspindifferenzen zwischen den Übergangsniveaus ergeben
sich sehr große Halbwertzeiten (sec <-> Jahre) des angeregten
Niveaus (isomere Zustände). Sie häufen sich für Kerne mit Z oder N
kurz vor Erreichen der magischen Zahlen 50, 82, 126.
Bei hohen Multipolordnungen und/oder kleinen Übergangsenergien
tritt als Konkurrenzprozeß die {{FB|innere Konversion}} in den Vordergrund,
bei der statt eines <math>\gamma</math>-Quants ein Hüllenelektron mit <math>E = E_\gamma
- E_B</math> (<math>E_B</math> Bindungsenergie) emittiert wird. Dieser Effekt entspricht
dem {{FB|Augereffekt}} in der Atomhülle.

Aktuelle Version vom 28. August 2011, 15:18 Uhr

Die Abfrage enthält eine leere Bedingung.


Fehler beim Erstellen des Vorschaubildes: Die Miniaturansicht konnte nicht am vorgesehenen Ort gespeichert werden
γ-Zerfall


Erhaltungssätze

Energie
EiEk=ω

(genauer abzüglich der Rückstoßenergie ER wegen

Pi=0Pk=E/cER=pk2/2M=E2/2mc2

z.B: E=1MeV,A=50 also ER(106eV)22×50×109eV10eV


Drehimpuls
IiIk=L der vom γ-Quant weggeführte Drehimpuls, Multipolentwicklung
Parität
PiPk=Pstr Parität der entsprechenden Multipolstrahlung

Multipolordnung 2L:

L=1
Dipol
L=2
Quadrupol
L=3
Oktupol

...etc.

Elektrische und magnetische Multipole:

  • E1 E2 E3 ...
  • M1 M2 M3 ...

mit unterschiedlicher Parität:


Danach wird beispielsweise für den Übergang 2+ --> 0+ nur E2-Strahlung emittiert, während für einen 5/23/2+-Übergang theoretisch M4-, E3-, M2- und E1-Strahlung auftreten könnte. Da die Übergangswahrscheinlichkeit für wachsende Multipolordnung sehr stark abnimmt, kommt in der Praxis nur die niedrigste Ordnung - hier nur E1 - vor.

Abschätzung der übergangswahrscheinlichkeiten

Allgemein für die pro zeiteinheit abgestrahlte Energie einer mit der Beschleunigung b bewegten Ladung e:

dEdt=14πε02e23c3b2


Für einen elektischen Dipol er(t)=er0cosωt gilt für die mittlere abgestrahlte Energie wegen b=ω2cosωt und b2=12ω4r02


dE¯dt=14πε0e23c3ω4r02

Die pro Zeiteinheit abgestrahlten photonen erhält man nach Division von ω zu:

A=dE¯dt/ω=14πε0131(ωc)3(er0)2=14πε0e2α=1137ω(ωr0c)2


Für eine grobe Abschätzung ersetzt man r0 durch den Kernradius R. Damit ist die entscheidende Größe ωRc=Rλ das Verhältnis von Kernradius zur Wellenlänge/2π der Strahlung. Mit R1,2A31015m und λ¯200×1015m/E[MeV] ergibt sich für mittelschwere Kerne und E1MeV für dieses Verhältnis R/λ102. Wegen ω1021s1 für E1MeV erhält man für die übergangswahrscheinlichkeit A113710214s11015s1. Für höhere elektrische Multipole wird der Faktor (ωRc)2 durch (ωRc)2L ersetzt. Aufeinanderfolgende Multipolordnungen unterscheiden sich also bei E1MeV um ca. 4 - 5 Größenordnungen.


Für magnetische Dipolstrahlung wird eR durch μK ersetzt. Magnetische und elektrische Dipolübergänge unterscheiden sich demnachbei den Übergangswahrscheinlichkeiten um den Faktor (μK/eR)2. Aus der Unschärferelation Rmv erhält man für diesen Faktor (e2mpc/eR)2(vc)2102103. Für höhere magnetische Multipolordnungen wird μK durch μLRL1 ersetzt, so daß dieser Faktor auch für höhere Multipolordnungen gilt. Zusammenfassend: A(ML)A(EL)(vc)2A(EL+1)A(EL)(Rλ¯)2


Die experimentellen Werte sind für E1 um ca. 103106 langsamer, für E2 um ca 102 schneller und für die übrigen Übergänge um ca. 101102 langsamer als die (Blatt-Weisskopf)-Abschätzungen.


Bei hohen Kernspindifferenzen zwischen den Übergangsniveaus ergeben sich sehr große Halbwertzeiten (sec <-> Jahre) des angeregten Niveaus (isomere Zustände). Sie häufen sich für Kerne mit Z oder N kurz vor Erreichen der magischen Zahlen 50, 82, 126.


Bei hohen Multipolordnungen und/oder kleinen Übergangsenergien tritt als Konkurrenzprozeß die innere Konversion in den Vordergrund, bei der statt eines γ-Quants ein Hüllenelektron mit E=EγEB (EB Bindungsenergie) emittiert wird. Dieser Effekt entspricht dem Augereffekt in der Atomhülle.