Zustände mit Bahn- und Spinvariablen: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
K Pfeile einfügen, replaced: -> → → (2)
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 4: Zeile 4:


: <math>\begin{align}
: <math>\begin{align}
& \left| nlm{{m}_{s}} \right\rangle =\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle \in {{H}_{B}}\times {{H}_{S}} \\
& \left| nlm{{m}_{s}} \right\rangle =\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle \in {{H}_{B}}\times {{H}_{S}} \\
& \left| nlm \right\rangle \in {{H}_{B}} \\
& \left| nlm \right\rangle \in {{H}_{B}} \\
& \left| {{m}_{s}} \right\rangle \in {{H}_{S}} \\
& \left| {{m}_{s}} \right\rangle \in {{H}_{S}} \\
\end{align}</math>
\end{align}</math>


Zeile 139: Zeile 135:
:<math>\begin{align}
:<math>\begin{align}
& \left( \begin{matrix}
& \left( \begin{matrix}
{{{\hat{H}}}_{\acute{\ }B}}+\hbar {{\omega }_{l}} & 0 \\
{{{\hat{H}}}_{\acute{\ }B}}+\hbar {{\omega }_{l}} & 0 \\
0 & {{{\hat{H}}}_{\acute{\ }B}}-\hbar {{\omega }_{l}} \\
0 & {{{\hat{H}}}_{\acute{\ }B}}-\hbar {{\omega }_{l}} \\
\end{matrix} \right)\left( \begin{matrix}
\end{matrix} \right)\left( \begin{matrix}
{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{matrix} \right)=i\hbar \frac{\partial }{\partial t}\left( \begin{matrix}
\end{matrix} \right)=i\hbar \frac{\partial }{\partial t}\left( \begin{matrix}
{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{matrix} \right) \\
\end{matrix} \right) \\
Zeile 159: Zeile 150:
== Pauli Gleichung ==
== Pauli Gleichung ==


'''Anwendung: '''- einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial ( Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld <math>\bar{B}=B{{\bar{e}}_{3}}</math>
'''Anwendung: '''- einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial (Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld <math>\bar{B}=B{{\bar{e}}_{3}}</math>


: <math>\hat{H}={{\hat{H}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}</math>
: <math>\hat{H}={{\hat{H}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}</math>
Zeile 166: Zeile 157:


: <math>\begin{align}
: <math>\begin{align}
& \hat{H}={{{\hat{H}}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& \hat{H}={{{\hat{H}}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& \hat{H}\cong \left[\frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r) \right]\times 1-\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right) \\
& \hat{H}\cong \left[\frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r) \right]\times 1-\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right) \\
Zeile 189: Zeile 179:


Das bedeutet:
Das bedeutet:
teilweise Aufhebung der <math>2(2l+1)</math>- fachen Entartung (sogenannter {{FB|Anomaler Zeemann-Effekt}} !)
teilweise Aufhebung der <math>2(2l+1)</math>- fachen Entartung (sogenannter {{FB|Anomaler Zeemann-Effekt}}!)


{{Gln| <math>E={{E}_{nl}}-{{\mu }_{B}}B\left( m+2{{m}_{s}} \right)</math>}}
{{Gln| <math>E={{E}_{nl}}-{{\mu }_{B}}B\left( m+2{{m}_{s}} \right)</math>}}
Zeile 195: Zeile 185:
Dies gilt für '''paramagnetische''' Atome mit magnetischem Moment <math>{{\mu }_{3}}={{\mu }_{B}}\left( m+2{{m}_{s}} \right)</math>.
Dies gilt für '''paramagnetische''' Atome mit magnetischem Moment <math>{{\mu }_{3}}={{\mu }_{B}}\left( m+2{{m}_{s}} \right)</math>.


Dabei entspricht <math>2</math> vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist ! ( Siehe oben).
Dabei entspricht <math>2</math> vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist! (Siehe oben).
Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von <math>{{\mu }_{B}}</math>
Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von <math>{{\mu }_{B}}</math>
angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren ( für den anomalen Zeemann- Effekt ):
angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren (für den anomalen Zeemann- Effekt):
Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben!
Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben!
Da die Aufhebung der Spin- Entartung die Energiezustände wieder so "weiterrückt", dass vorher getrennte wieder zusammenfallen!
Da die Aufhebung der Spin- Entartung die Energiezustände wieder so "weiterrückt", dass vorher getrennte wieder zusammenfallen!
Zeile 203: Zeile 193:
{|
{|
|+Tabelle: Landé- Faktoren
|+Tabelle: Landé- Faktoren
!Teilchen !! s !! g !! Q
!Teilchen!! s!! g!! Q
|-
|-
|'''Elektron''' ||'''1/2''' ||'''2'''|| '''-e'''
|'''Elektron''' ||'''1/2''' ||'''2'''|| '''-e'''

Aktuelle Version vom 7. April 2012, 16:00 Uhr




Sei nun |nlmms ein Zustand, der Bahn- und Spinfreiheitsgrade beschreibt:

|nlmms=|nlm|msHB×HS|nlmHB|msHS

Der Bahnzustand ist Element des Bahn- Hilbertraumes und der Spinzustand Element des Spin- Hilbertraumes. Der Gesamtzustand erfordert einen Raum, der sich als direktes Produkt der beiden Hilberträume zeigt.

Allgemein gilt für separable oder Produktzustände |n1n2=|n1|n2

(äquivalente Sprechweise):

m1m2|n1n2=m1m2|n1m1m2|n2=m1|n1m2|n2

Ein beliebiger Zustand kann nach Spin- Basis Zuständen |,|

zerlegt werden:

|Ψt=|Ψ1t|+|Ψ2t|

mit

|Ψαt=d3r|r¯r¯||Ψαt

In der Ortsraum- Basis mit dem Bahn- Zustand α=1,2

In der Matrix- Darstellung des Spinraumes ergibt dies:

|Ψt=(|Ψ1t|Ψ2t)=d3r|r¯(r¯||Ψ1tr¯||Ψ2t)

Mit

(|Ψ1t|Ψ2t)

entsprechend 2 Spinkomponenten, also entsprechend |,|

Die Vollständigkeit der Zustände |r¯=|r¯|,|r¯=|r¯|

folgt aus:

d3r{|r¯r¯|+|r¯r¯|}=1HB×HS

Weiter:

r¯||Ψt=r¯||Ψ1tr¯||Ψt=r¯||Ψ2t

Also die Komponenten von |Ψtam Ort r¯, einmal die Komponente mit Spin und einmal die Komponente mit Spin . Dabei gilt:

|r¯||Ψt|2=|r¯||Ψ1t|2|r¯||Ψt|2=|r¯||Ψ2t|2

entspricht der Wahrscheinlichkeit, das Elektron zur Zeit t bei r¯ mit Spin bzw. Spin zu finden.

Schrödingergleichung im Spin- Bahn- Raum

Hamilton- Operator für Bahn:

H^B=12m0(p¯eA¯)2+V(r)

Elektron mit Ladung e{{H}_{B}}</math>

Hamilton- Operator für Spin:

H^S=ωlσ¯^3ωl=|e|B2m0
H^S

wirkt dabei nur im Hilbertraum HS

Ohne Berücksichtigung von H^S

H^B|Ψαt=it|Ψαtα=1,2

Also haben wir je nach Spinzustand schon 2 Schrödingergleichungen in HB

Es gilt (äquivalente Darstellung):

H^B|Ψαt=it|Ψαt(H^B×1)|Ψt=it|Ψtα=1,2

Dabei

1

= Einsoperator im Spinraum → Spin bleibt unberücksichtigt. Einheitsmatrix für beliebigen Vorgang im Spinraum: 1=(1001)

MIT Berücksichtigung von H^S

(H^B×1+H^S)|Ψt=it|Ψt

In Matrix- Darstellung:

(H^´B+ωl00H^´Bωl)(|Ψ1t|Ψ2t)=it(|Ψ1t|Ψ2t)(H^´B+ωl)|Ψ1t=it|Ψ1t(H^´Bωl)|Ψ2t=it|Ψ2t

Pauli Gleichung

Anwendung: - einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial (Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld B¯=Be¯3

H^=H^B×1+HS=[12m0(p¯eA¯)2+V(r)]×1|e|B2m0σ¯^3

Dabei wird durch H^B×1 der Bahndrehimpuls Hamiltonian durch den Spinraum erweitert.

H^=H^B×1+HS=[12m0(p¯eA¯)2+V(r)]×1|e|B2m0σ¯^3H^[p¯22m0+V(r)]×1|e|B2m0(L^3×1+σ¯^3)p¯22m0+V(r)=H0H0|nlm=Enl|nlm

Wie man sieht bekommt man durch den Korrekturterm |e|B2m0(L^3×1+σ¯^3) eine Korrektur an die Energie. Für B=0 → Eigenzustände mit Spin

(H0×1)|nlmms=Enl|nlmms

Insgesamt 2(2l+1) fach entartet. Beim H- Atom: zusätzliche l- Entartung

B0
H^|nlmms=H0|nlm|ms|e|B2m0{(L^3|nlm)|ms+(σ¯^3|ms)|nlm}L^3|nlm=m|nlmσ¯^3|ms=2mS|msH0|nlm|ms|e|B2m0{(L^3|nlm)|ms+(σ¯^3|ms)|nlm}=[Enl|e|B2m0(m+2ms)]|nlmms

Das bedeutet: teilweise Aufhebung der 2(2l+1)- fachen Entartung (sogenannter Anomaler Zeemann-Effekt!)


E=EnlμBB(m+2ms)


Dies gilt für paramagnetische Atome mit magnetischem Moment μ3=μB(m+2ms).

Dabei entspricht 2 vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist! (Siehe oben). Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von μB angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren (für den anomalen Zeemann- Effekt): Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben! Da die Aufhebung der Spin- Entartung die Energiezustände wieder so "weiterrückt", dass vorher getrennte wieder zusammenfallen!

Tabelle: Landé- Faktoren
Teilchen s g Q
Elektron 1/2 2 -e
Proton 1/2 5,59 e
Neutron 1/2 -3,83 0
Neutrino 1/2 0 0
Photon 1 0 0