Verallgemeinerte kanonische Verteilung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
*>SchuBot
K Interpunktion, replaced: , → , (16), ( → ( (7)
 
(13 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<noinclude>{{Scripthinweis|Thermodynamik|1|3}}</noinclude>
<noinclude>{{Scripthinweis|Thermodynamik|1|3}}</noinclude>


===Verallgemeinerte kanonische Verteilung===
== Motivation ==
 
====Motivation:====
Makroskopische thermodynamische Zustände sind gegeben durch die Mittelwerte  
Makroskopische thermodynamische Zustände sind gegeben durch die Mittelwerte  
<math>\left\langle M(x) \right\rangle </math>
:<math>\left\langle M(x) \right\rangle </math>
von Mikroobservablen M(x), interpretiert als Zufallsvariable.
von Mikroobservablen M(x), interpretiert als Zufallsvariable.


Rückschlüsse von  
Rückschlüsse von  
<math>\left\langle M(x) \right\rangle </math>
:<math>\left\langle M(x) \right\rangle </math>
auf die Wahrscheinlichkeitsverteilung  
auf die Wahrscheinlichkeitsverteilung  
<math>\rho (x)?</math>
:<math>\rho (x)?</math>




====Methode:====
== Methode ==
Vorurteilsfreie Schätzung ( Jaynes , 1957):
Vorurteilsfreie Schätzung (Jaynes, 1957):
 
(unbiased guess; Prinzip des maximalen Nichtwissens)
unbiased guess; Prinzip des maximalen Nichtwissens:


* Verallgemeinerung des Laplacschen Prinzips vom unzureichenden Grund.
* Verallgemeinerung des Laplacschen Prinzips vom unzureichenden Grund.
* ( Minimum der Shannon- Information  
** (Minimum der Shannon- Information <math>I\left( \rho (x) \right)</math>= Maximum des Nichtwissens <math>S\left( \rho (x) \right)</math> liefert Gleichverteilung)
<math>I\left( \rho (x) \right)</math>
* '''Jetzt: '''Zusätzlich zur Normierung der P<sub>i</sub> sind die Mittelwerte von m Zufallsvariablen:
= Maximum des Nichtwissens  
<math>S\left( \rho (x) \right)</math>
liefert Gleichverteilung
* '''Jetzt: '''Zusätzlich zur Normierung der Pi sind die Mittelwerte von m Zufallsvariablen:


 
:<math>\begin{align}
<math>\begin{align}
   & {{M}_{i}}^{n} \\  
   & {{M}_{i}}^{n} \\  
  & n=1,2,...,m \\  
  & n=1,2,...,m \\  
Zeile 39: Zeile 31:
<u>'''Annahme:'''</u>
<u>'''Annahme:'''</u>


Jedes Elementarereignis  
Jedes Elementarereignis <math>{{A}_{i}}</math> hat gleiche '''a-priori'''- Wahrscheinlichkeit, das heißt OHNE zusätzliche Kenntnisse <math>\left\langle {{M}^{n}} \right\rangle </math> gilt Gleichverteilung über den <math>{{A}_{i}}</math>.
<math>{{A}_{i}}</math>
hat gleiche '''a-priori'''- Wahrscheinlichkeit , das heißt OHNE zusätzliche Kenntnisse
 
 
<math>\left\langle {{M}^{n}} \right\rangle </math>
gilt Gleichverteilung über den  
<math>{{A}_{i}}</math>
.
 
====Informationstheoretisches Prinzip ( Jaynes)====


Suche die Wahrscheinlichkeitsverteilung , die unter der Erfüllung aller bekannten Angaben als Nebenbedingung die '''minimale Information '''enthält:
== Informationstheoretisches Prinzip==
(nach (Jaynes 1922-1998))


Also:
Suche die Wahrscheinlichkeitsverteilung, die unter der Erfüllung aller bekannten Angaben als Nebenbedingung die '''minimale Information''' enthält:
 
 
<math>I(P)=\sum\limits_{i=1}^{N}{{}}{{P}_{i}}\ln {{P}_{i}}=!=Minimum</math>


Also: <math>I(P)=\sum\limits_{i=1}^{N}{{}}{{P}_{i}}\ln {{P}_{i}}=!=Minimum</math>


Nebenbed.:
Nebenbed.:
 
:<math>\begin{align}
 
<math>\begin{align}
   & \sum\limits_{i=1}^{N}{{}}{{P}_{i}}=1 \\  
   & \sum\limits_{i=1}^{N}{{}}{{P}_{i}}=1 \\  
  & \left\langle {{M}^{n}} \right\rangle =\sum\limits_{i=1}^{N}{{}}{{P}_{i}}{{M}_{i}}^{n} \\  
  & \left\langle {{M}^{n}} \right\rangle =\sum\limits_{i=1}^{N}{{}}{{P}_{i}}{{M}_{i}}^{n} \\  
Zeile 68: Zeile 47:
\end{align}</math>
\end{align}</math>


<u>Variation</u>: <math>\delta I=\sum\limits_{i=1}^{N}{{}}\left( \ln {{P}_{i}}+1 \right)\delta {{P}_{i}}</math>


====Variation:====


<math>\delta I=\sum\limits_{i=1}^{N}{{}}\left( \ln {{P}_{i}}+1 \right)\delta {{P}_{i}}</math>
Es gilt: von den  N Variationen  <math>\delta {{P}_{i}}</math> sind nur N-m-1  unabhängig voneinander!


:<math>\sum\limits_{i}^{{}}{{}}\delta {{P}_{i}}=0</math>


Es gilt: von den  N Variationen
Lagrange- Multiplikator <math>\lambda =-\left( \Psi +1 \right)</math>
<math>\delta {{P}_{i}}</math>
sind nur N-m-1  unabhängig voneinander !


:<math>\sum\limits_{i}^{{}}{{}}{{M}_{i}}^{n}\delta {{P}_{i}}=0</math>


<math>\sum\limits_{i}^{{}}{{}}\delta {{P}_{i}}=0</math>


Lagrange- Multiplikator <math>{{\lambda }_{n}}</math>


Lagrange- Multiplikator
<u>Anleitung</u>: Wähle <math>\Psi ,{{\lambda }_{n}}</math> so, dass die Koeffizienten von <math>\left( m+1 \right)\delta {{P}_{i}}</math>´s verschwinden, die übrigen N-(m+1) sind dann frei variierbar!
 
 
<math>\lambda =-\left( \Psi +1 \right)</math>
 
 
 
<math>\sum\limits_{i}^{{}}{{}}{{M}_{i}}^{n}\delta {{P}_{i}}=0</math>
 
 
Lagrange- Multiplikator
 
 
<math>{{\lambda }_{n}}</math>
 
 
====Anleitung====
Wähle  
<math>\Psi ,{{\lambda }_{n}}</math>
so, dass die Koeffizienten von  
<math>\left( m+1 \right)\delta {{P}_{i}}</math>
´s verschwinden, die übrigen N-(m+1) sind dann frei variierbar !


Somit:
Somit:


:<math>\Rightarrow \delta I=\sum\limits_{i=1}^{N}{{}}\left( \ln {{P}_{i}}-\Psi +{{\lambda }_{n}}{{M}_{i}}^{n} \right)\delta {{P}_{i}}=!=0</math>


<math>\Rightarrow \delta I=\sum\limits_{i=1}^{N}{{}}\left( \ln {{P}_{i}}-\Psi +{{\lambda }_{n}}{{M}_{i}}^{n} \right)\delta {{P}_{i}}=!=0</math>


Vorsicht: Auch Summe über <math>\nu</math> (Einsteinsche Summenkonvention!)


Vorsicht: Auch Summe über n ( Einsteinsche Summenkonvention !)


{{Def|:<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math> '''verallgemeinerte kanonische Verteilung'''|verallgemeinerte kanonische Verteilung}}


<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>
Die Lagrange- Multiplikatoren <math>\Psi ,{{\lambda }_{n}}</math> sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt!


===Kontinuierliche Ereignismenge===


====Die verallgemeinerte kanonische Verteilung====


Die Lagrange- Multiplikatoren
:<math>I(\rho )=\int_{{}}^{{}}{{{d}^{d}}x\rho (x)\ln \rho (x)}=!=Minimum</math>
 
 
<math>\Psi ,{{\lambda }_{n}}</math>
sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt !
 
<u>'''Kontinuierliche Ereignismenge !'''</u>
 
 
<math>I(\rho )=\int_{{}}^{{}}{{{d}^{d}}x\rho (x)\ln \rho (x)}=!=Minimum</math>




Zeile 134: Zeile 84:




<math>\begin{align}
:<math>\begin{align}
   & \int_{{}}^{{}}{{{d}^{d}}x\rho (x)}=1 \\  
   & \int_{{}}^{{}}{{{d}^{d}}x\rho (x)}=1 \\  
  & \int_{{}}^{{}}{{{d}^{d}}x\rho (x)}{{M}^{n}}(x)=\left\langle {{M}^{n}} \right\rangle  \\  
  & \int_{{}}^{{}}{{{d}^{d}}x\rho (x)}{{M}^{n}}(x)=\left\langle {{M}^{n}} \right\rangle  \\  
Zeile 142: Zeile 92:


Durchführung einer Funktionalvariation:  
Durchführung einer Funktionalvariation:  
<math>\delta \rho (x)</math>
:<math>\delta \rho (x)</math>
:
 




<math>\begin{align}
:<math>\begin{align}
   & \delta I(\rho )=\int_{{}}^{{}}{{{d}^{d}}x\left( \ln \rho (x)+1 \right)\delta \rho (x)}=0 \\  
   & \delta I(\rho )=\int_{{}}^{{}}{{{d}^{d}}x\left( \ln \rho (x)+1 \right)\delta \rho (x)}=0 \\  
  & \Rightarrow \int_{{}}^{{}}{{{d}^{d}}x\delta \rho (x)}=0 \\  
  & \Rightarrow \int_{{}}^{{}}{{{d}^{d}}x\delta \rho (x)}=0 \\  
Zeile 157: Zeile 107:
'''Vergleiche: A. Katz, Principles of Statistial Mechanics'''
'''Vergleiche: A. Katz, Principles of Statistial Mechanics'''


Eigenschaften der verallgemeinerten kanonischen Verteilung
{{AnMS|Siehe auch {{Quelle|St7B|5.4.13|Kap 5.4.3 S46}}}}
 
==Eigenschaften der verallgemeinerten kanonischen Verteilung==


hier: noch rein informationstheoretisch,
hier: noch rein informationstheoretisch,
Zeile 163: Zeile 115:
später: wichtige Anwendungen in der Thermodynamik
später: wichtige Anwendungen in der Thermodynamik


====Legendre- Transformation:====
{{FB|Legendre- Transformation}}:


Sei  
Sei <math>\Psi (t)</math> eine Bahn!
<math>\Psi (t)</math>
eine Bahn !
 
Dann ist
<math>M:=\frac{d\Psi (t)}{dt}</math>
 
 
die Geschwindigkeit.
 
Aus
<math>\Psi (M)</math>
kann die Bahn
<math>\Psi (t)</math>
noch nicht rekonstruiert werden, jedoch aus
 
 
<math>I(M)=\Psi (t)-M(t)t</math>


Dann ist <math>M:=\frac{d\Psi (t)}{dt}</math> die Geschwindigkeit.


Aus <math>\Psi (M)</math> kann die Bahn <math>\Psi (t)</math>  noch nicht rekonstruiert werden, jedoch aus
:<math>I(M)=\Psi (t)-M(t)t</math>
mit t=t(M):
mit t=t(M):




 
:<math>\begin{align}
<math>\begin{align}
   & \frac{dI}{dM}=\frac{d\Psi (t)}{dt}\frac{dtM}{dM}-M\frac{dt}{dM}-t \\  
   & \frac{dI}{dM}=\frac{d\Psi (t)}{dt}\frac{dtM}{dM}-M\frac{dt}{dM}-t \\  
  & M:=\frac{d\Psi (t)}{dt} \\  
  & M:=\frac{d\Psi (t)}{dt} \\  
Zeile 197: Zeile 134:


hieraus folgt  
hieraus folgt  
<math>M(t)</math>
:<math>M(t)</math>




eingesetzt in  
eingesetzt in  
<math>I(M)=\Psi (t)-M(t)t\Rightarrow \Psi (t)</math>
:<math>I(M)=\Psi (t)-M(t)t\Rightarrow \Psi (t)</math>




durch Eisnetzen gewinnt man  
durch Eisnetzen gewinnt man  
<math>\Psi (t)</math>
:<math>\Psi (t)</math>




Zeile 211: Zeile 148:




<math>I(M)=\Psi (t)-M(t)t</math>
:<math>I(M)=\Psi (t)-M(t)t</math>




heißt legendre- Transformierte von  
heißt legendre- Transformierte von  
<math>\Psi (t)</math>
:<math>\Psi (t)</math>.
.
 


====Anwendung auf die verallgemeinerte kanonische Verteilung:====
=== Anwendung auf die verallgemeinerte kanonische Verteilung: ===


<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>
:<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>




Normierung:
Normierung:


 
{{Gln|
<math>\sum\limits_{i}^{{}}{{}}{{P}_{i}}=1\Rightarrow {{e}^{-\Psi }}=\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)\equiv Z</math>
:<math>\sum\limits_{i}^{{}}{{}}{{P}_{i}}=1\Rightarrow {{e}^{-\Psi }}=\sum_i \exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)\equiv Z</math>}}




Zeile 232: Zeile 169:




<math>\Psi =\Psi \left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
:<math>\Psi =\Psi \left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> und <math>{{P}_{i}}</math> sind durch <math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> vollständig parametrisiert.
  und
<math>{{P}_{i}}</math>
sind durch  
<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
vollständig parametrisiert.


'''Nebenbemerkung'''
'''Nebenbemerkung'''


Die Verteilung  
Die Verteilung <math>{{P}_{i}}</math> bzw. <math>\rho \left( x \right)</math> wirkt auf dem Raum der Zufallsvariablen <math>{{M}_{i}}^{n}</math> (diskret) bzw. <math>x\in {{R}^{d}}</math>(kontinuierlich).
<math>{{P}_{i}}</math>
:<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> sind Parameter.
bzw.  
<math>\rho \left( x \right)</math>
wirkt auf dem Raum der Zufallsvariablen  
<math>{{M}_{i}}^{n}</math>
(diskret) bzw.  
<math>x\in {{R}^{d}}</math>
(kontinuierlich).
 
 
<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
sind Parameter.
 
 
<math>\left\langle {{M}^{n}} \right\rangle </math>
sind Erwartungswerte
<math>\left\langle {{M}^{n}} \right\rangle \in R</math>
 


'''Beispiel:'''


:<math>\left\langle {{M}^{n}} \right\rangle </math> sind Erwartungswerte <math>\left\langle {{M}^{n}} \right\rangle \in R</math>


<math>x=\left( {{q}_{1}},...,{{q}_{3N}},{{p}_{1}}....,{{p}_{3N}} \right)\in \Gamma </math>
  ( Phasenraumelement)


mit
{{Beispiel|'''Beispiel:'''
<math>\Gamma </math>
:<math>x=\left( {{q}_{1}},...,{{q}_{3N}},{{p}_{1}}....,{{p}_{3N}} \right)\in \Gamma </math> (Phasenraumelement)
als Phasenraum der kanonisch konjugierten Variablen


mit <math>\Gamma </math> als Phasenraum der kanonisch konjugierten Variablen


<math>M\left( x \right)=\sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right)</math>
mikrokanonisch Verteilungsfunktion


:<math>M\left( x \right)=\sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right)</math> mikrokanonisch Verteilungsfunktion


<math>\left\langle M\left( x \right) \right\rangle =\left\langle \sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right) \right\rangle </math>
als mittlere Energie


:<math>\left\langle M\left( x \right) \right\rangle =\left\langle \sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right) \right\rangle </math> als mittlere Energie
}}
'''Shannon- Information:'''
'''Shannon- Information:'''




<math>\begin{align}
:<math>\begin{align}
   & I(P)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)=\Psi -{{\lambda }_{n}}\sum\limits_{i}^{{}}{{}}{{P}_{i}}{{M}_{i}}^{n} \\  
   & I(P)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)=\Psi -{{\lambda }_{n}}\sum\limits_{i}^{{}}{{}}{{P}_{i}}{{M}_{i}}^{n} \\  
  & I=\Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)-{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle  \\  
  & I=\Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)-{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle  \\  
Zeile 288: Zeile 200:




Aus
Aus <math>\begin{align}
 
 
<math>\begin{align}
   & \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)=-\ln \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\  
   & \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)=-\ln \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\  
  & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =-\frac{\sum\limits_{i}^{{}}{{}}\left( -{{M}_{i}}^{n} \right)\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)}{\sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)} \\   
  & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =-\frac{\sum\limits_{i}^{{}}{{}}\left( -{{M}_{i}}^{n} \right)\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)}{\sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)} \\   
Zeile 302: Zeile 211:




Damit können wir die Legendre- Transformation ( verallgemeinert auf mehrere Variablen) identifizieren:
Damit können wir die Legendre- Transformation (verallgemeinert auf mehrere Variablen) identifizieren:




<math>\Psi (t)\to \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)</math>
:<math>\Psi (t)\to \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)</math> '''Variable''' <math>{{\lambda }_{n}}</math>
  '''Variable
<math>{{\lambda }_{n}}</math>
'''




<math>M\to \left\langle {{M}^{n}} \right\rangle =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}</math>
:<math>M\to \left\langle {{M}^{n}} \right\rangle =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}</math> neue Variable  <math>\left\langle {{M}^{n}} \right\rangle </math>
  neue Variable   
<math>\left\langle {{M}^{n}} \right\rangle </math>






<math>I\left( M \right)\to I=\Psi -{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle </math>
:<math>I\left( M \right)\to I=\Psi -{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle </math> Legendre- Transformierte von <math>\Psi </math>!
  Legendre- Transformierte von  
<math>\Psi </math>
!


Es folgt:
Es folgt:




<math>\frac{\partial I}{\partial \left\langle {{M}^{n}} \right\rangle }=-{{\lambda }_{n}}</math>
:<math>\frac{\partial I}{\partial \left\langle {{M}^{n}} \right\rangle }=-{{\lambda }_{n}}</math>




Zeile 331: Zeile 232:




<math>\begin{align}
:<math>\begin{align}
   & \frac{\partial I}{\partial \left\langle {{M}^{n}} \right\rangle }=\frac{\partial \Psi }{\partial {{\lambda }_{m}}}\frac{\partial {{\lambda }_{m}}}{\partial \left\langle {{M}^{n}} \right\rangle }-\frac{\partial {{\lambda }_{m}}}{\partial \left\langle {{M}^{n}} \right\rangle }\left\langle {{M}^{m}} \right\rangle -{{\lambda }_{n}} \\  
   & \frac{\partial I}{\partial \left\langle {{M}^{n}} \right\rangle }=\frac{\partial \Psi }{\partial {{\lambda }_{m}}}\frac{\partial {{\lambda }_{m}}}{\partial \left\langle {{M}^{n}} \right\rangle }-\frac{\partial {{\lambda }_{m}}}{\partial \left\langle {{M}^{n}} \right\rangle }\left\langle {{M}^{m}} \right\rangle -{{\lambda }_{n}} \\  
  & \frac{\partial \Psi }{\partial {{\lambda }_{m}}}=\left\langle {{M}^{m}} \right\rangle  \\  
  & \frac{\partial \Psi }{\partial {{\lambda }_{m}}}=\left\langle {{M}^{m}} \right\rangle  \\  
Zeile 340: Zeile 241:
Zusammengefasst:
Zusammengefasst:


{{Gln|
:<math>dI=-{{\lambda }_{n}}d\left\langle {{M}^{n}} \right\rangle </math>


<math>dI=-{{\lambda }_{n}}d\left\langle {{M}^{n}} \right\rangle </math>
Dies ist in der Thermodynamik die '''Gibbsche Fundamentalgleichung'''!|Gibbsche Fundamentalgleichung}}
 
 
Dies ist in der Thermodynamik die Gibbsche Fundamentalgleichung !!


Betachte Variation:
Betachte Variation:




<math>\left\langle {{M}^{n}} \right\rangle \to \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle </math>
:<math>\left\langle {{M}^{n}} \right\rangle \to \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle </math>




Zeile 355: Zeile 255:




<math>\begin{align}
:<math>\begin{align}
   & {{\lambda }_{n}}\to {{\lambda }_{n}}+\delta {{\lambda }_{n}} \\  
   & {{\lambda }_{n}}\to {{\lambda }_{n}}+\delta {{\lambda }_{n}} \\  
  & \Psi \to \Psi +\delta \Psi  \\  
  & \Psi \to \Psi +\delta \Psi  \\  
Zeile 365: Zeile 265:




<math>\begin{align}
:<math>\begin{align}
   & K\left( P+\delta P,P \right)=\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln {{P}_{i}} \\  
   & K\left( P+\delta P,P \right)=\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln {{P}_{i}} \\  
  & \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)=I\left( P+\delta P \right) \\  
  & \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)=I\left( P+\delta P \right) \\  
Zeile 376: Zeile 276:


Wir können die variierten Funktionen für kleine Variationen  
Wir können die variierten Funktionen für kleine Variationen  
<math>\delta {{\lambda }_{n}}</math>
:<math>\delta {{\lambda }_{n}}</math>
entwickeln:
entwickeln:




<math>\begin{align}
:<math>\begin{align}
   & \delta \Psi =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\  
   & \delta \Psi =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\  
  & \delta \left\langle {{M}^{n}} \right\rangle =\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\  
  & \delta \left\langle {{M}^{n}} \right\rangle =\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\  
Zeile 396: Zeile 296:




<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow K\left( P+\delta P,P \right)=-\frac{1}{2}\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}\ge 0 \\  
   & \Rightarrow K\left( P+\delta P,P \right)=-\frac{1}{2}\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}\ge 0 \\  
  & \Rightarrow \frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\le 0 \\  
  & \Rightarrow \frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\le 0 \\  
Zeile 402: Zeile 302:




negativ semidefinit, für alle  
negativ semidefinit, für alle <math>\delta {{\lambda }_{m}}</math>
<math>\delta {{\lambda }_{m}}</math>




Definiere Suszeptibilitätsmatrix:
Definiere {{FB|Suszeptibilitätsmatrix}}:




<math>{{\eta }^{mn}}:=\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}</math>
:<math>{{\eta }^{mn}}:=\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}</math>




Diese Matrix beschreibt die Änderung von  
Diese Matrix beschreibt die Änderung von <math>\left\langle {{M}^{m}} \right\rangle </math> bei Variation von <math>{{\lambda }_{n}}</math>:
<math>\left\langle {{M}^{m}} \right\rangle </math>




bei Variation von
:<math>\delta \left\langle {\bar{M}} \right\rangle =\bar{\bar{\eta }}\delta \bar{\lambda }</math>
<math>{{\lambda }_{n}}</math>
:
 
 
<math>\delta \left\langle {\bar{M}} \right\rangle =\bar{\bar{\eta }}\delta \bar{\lambda }</math>




Zeile 427: Zeile 320:




<math>{{\tilde{\eta }}_{\sigma \lambda }}:=\frac{\partial {{\lambda }_{\sigma }}}{\partial \left\langle {{M}^{\lambda }} \right\rangle }=-\frac{{{\partial }^{2}}I}{\partial \left\langle {{M}^{\lambda }} \right\rangle \partial \left\langle {{M}^{\sigma }} \right\rangle }</math>
:<math>{{\tilde{\eta }}_{\sigma \lambda }}:=\frac{\partial {{\lambda }_{\sigma }}}{\partial \left\langle {{M}^{\lambda }} \right\rangle }=-\frac{{{\partial }^{2}}I}{\partial \left\langle {{M}^{\lambda }} \right\rangle \partial \left\langle {{M}^{\sigma }} \right\rangle }</math>




Zeile 433: Zeile 326:




<math>\begin{align}
:<math>\begin{align}
   & \delta \bar{\lambda }=\tilde{\bar{\bar{\eta }}}\delta \left\langle {\bar{M}} \right\rangle  \\  
   & \delta \bar{\lambda }=\tilde{\bar{\bar{\eta }}}\delta \left\langle {\bar{M}} \right\rangle  \\  
  & \tilde{\bar{\bar{\eta }}}={{{\bar{\bar{\eta }}}}^{-1}} \\  
  & \tilde{\bar{\bar{\eta }}}={{{\bar{\bar{\eta }}}}^{-1}} \\  
Zeile 442: Zeile 335:




<math>\begin{align}
:<math>\begin{align}
   & \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\frac{\partial }{\partial {{\lambda }_{m}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right) \\  
   & \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\frac{\partial }{\partial {{\lambda }_{m}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right) \\  
  & \left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\left\langle {{M}^{m}} \right\rangle \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)={{\eta }^{mn}} \\  
  & \left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\left\langle {{M}^{m}} \right\rangle \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)={{\eta }^{mn}} \\  
Zeile 450: Zeile 343:


Somit:
Somit:
:<math>{{\eta }^{nm}}</math>  ist symmetrisch


Aus<math>K\left( P+\delta P,P \right)\ge 0</math> folgt:


<math>{{\eta }^{nm}}</math>
  ist symmetrisch


Aus
:<math>{{\eta }^{mn}}\delta {{\lambda }_{m}}\delta {{\lambda }_{n}}=\delta \left\langle {{M}^{n}} \right\rangle \delta {{\lambda }_{n}}={{\tilde{\eta }}_{nm}}\delta \left\langle {{M}^{n}} \right\rangle \delta \left\langle {{M}^{m}} \right\rangle \le 0</math>
 
 
<math>K\left( P+\delta P,P \right)\ge 0</math>
 
 
folgt:
 
 
<math>{{\eta }^{mn}}\delta {{\lambda }_{m}}\delta {{\lambda }_{n}}=\delta \left\langle {{M}^{n}} \right\rangle \delta {{\lambda }_{n}}={{\tilde{\eta }}_{nm}}\delta \left\langle {{M}^{n}} \right\rangle \delta \left\langle {{M}^{m}} \right\rangle \le 0</math>




Zeile 470: Zeile 354:




<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow {{\eta }^{nn}}\le 0 \\  
   & \Rightarrow {{\eta }^{nn}}\le 0 \\  
  & {{{\tilde{\eta }}}_{nn}}\le 0 \\  
  & {{{\tilde{\eta }}}_{nn}}\le 0 \\  
Zeile 478: Zeile 362:
'''Nebenbemerkung:'''
'''Nebenbemerkung:'''


Also sind
Also sind <math>I\left( \left\langle {{M}^{n}} \right\rangle  \right)</math> und <math>-\Psi \left( {{\lambda }_{n}} \right)</math> konvex!


== Zusammenhang mit der Korrelationsmatrix ==


<math>I\left( \left\langle {{M}^{n}} \right\rangle \right)</math>
:<math>{{Q}^{mn}}:=\left\langle \Delta {{M}^{m}}\Delta {{M}^{n}} \right\rangle </math> ist Korrelationsmatrix (siehe oben)


:<math>={{\left\langle {{M}^{m}}{{M}^{n}} \right\rangle }_{c}}</math>  2. Kumulante


und


:<math>={{\left. \frac{{{\partial }^{2}}\Gamma \left( \alpha  \right)}{\partial {{\alpha }_{m}}\partial {{\alpha }_{n}}} \right|}_{\alpha =0}}</math>  mit Kumulantenerzeugender


<math>-\Psi \left( {{\lambda }_{n}} \right)</math>


 
:<math>\begin{align}
konvex !
 
====Zusammenhang mit der Korrelationsmatrix====
 
<math>{{Q}^{mn}}:=\left\langle \Delta {{M}^{m}}\Delta {{M}^{n}} \right\rangle </math>
  ist Korrelationsmatrix ( siehe oben)
 
 
<math>={{\left\langle {{M}^{m}}{{M}^{n}} \right\rangle }_{c}}</math>
  2. Kumulante
 
 
<math>={{\left. \frac{{{\partial }^{2}}\Gamma \left( \alpha  \right)}{\partial {{\alpha }_{m}}\partial {{\alpha }_{n}}} \right|}_{\alpha =0}}</math>
  mit Kumulantenerzeugender
 
 
<math>\begin{align}
   & \Gamma \left( \alpha  \right)=\ln \left\langle \exp \left( {{\alpha }_{n}}{{M}^{n}} \right) \right\rangle =\ln \sum\limits_{i}^{{}}{{}}{{P}_{i}}\exp \left( {{\alpha }_{n}}{{M}_{i}}^{n} \right)=\ln \sum\limits_{i}^{{}}{{}}{{e}^{\Psi -\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \\  
   & \Gamma \left( \alpha  \right)=\ln \left\langle \exp \left( {{\alpha }_{n}}{{M}^{n}} \right) \right\rangle =\ln \sum\limits_{i}^{{}}{{}}{{P}_{i}}\exp \left( {{\alpha }_{n}}{{M}_{i}}^{n} \right)=\ln \sum\limits_{i}^{{}}{{}}{{e}^{\Psi -\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \\  
  & =\ln \left[ {{e}^{\Psi }}\cdot \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right]=\Psi \left( \lambda  \right)+\ln \left[ \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right] \\  
  & =\ln \left[ {{e}^{\Psi }}\cdot \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right]=\Psi \left( \lambda  \right)+\ln \left[ \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right] \\  
Zeile 515: Zeile 383:




Suszeptibilität !
Suszeptibilität!


Also: Die Korrelationsmatrix ist das Negative der Suszeptibilität !!
Also: Die Korrelationsmatrix ist das Negative der Suszeptibilität!!


Also:
Also:
{{Gln|


 
:<math>{{Q}^{mn}}:=\left\langle \Delta {{M}^{m}}\Delta {{M}^{n}} \right\rangle =-\frac{\partial \left\langle {{M}^{m}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}</math> |Fluktuations-Dissipations-Theorem}}
<math>{{Q}^{mn}}:=\left\langle \Delta {{M}^{m}}\Delta {{M}^{n}} \right\rangle =-\frac{\partial \left\langle {{M}^{m}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}</math>




Fluktuations/ Dissipations- Theorem:
Fluktuations/ Dissipations- Theorem:


Fluktuationen: Zufällige Schwankungen um den Mittelwert
;{{FB|Fluktuationen}}: Zufällige Schwankungen um den Mittelwert
 
Dissipation: Systematische Änderung der Mittelwerte !


====Korrektur einer Verteilung durch Zusatzinformationen====
;{{FB|Dissipation}}: Systematische Änderung der Mittelwerte!


Sei
== Korrektur einer Verteilung durch Zusatzinformationen ==


Sei <math>{{P}^{0}}</math> die Verteilung, die <math>I\left( P \right)</math> unter Kenntnis der '''Nebenbedingungen'''


<math>{{P}^{0}}</math>
:<math>\begin{align}
die Verteilung, die
<math>I\left( P \right)</math>
unter Kenntnis der Nebenbedingungen
 
 
<math>\begin{align}
   & \sum\limits_{i}^{{}}{{}}{{P}_{i}}^{0}=1 \\  
   & \sum\limits_{i}^{{}}{{}}{{P}_{i}}^{0}=1 \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}^{0}{{M}_{i}}^{m}=\left\langle {{M}^{m}} \right\rangle  \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}^{0}{{M}_{i}}^{m}=\left\langle {{M}^{m}} \right\rangle  \\  
  & m=1,...,m \\  
  & m=1,...,m \\  
\end{align}</math>
\end{align}</math>
 
: minimalisiert (Vorsicht: Index und Laufende sind ungünstigerweise gleich bezeichnet!)
 
minimalisiert ( Vorsicht: Index und Laufende sind ungünstigerweise gleich bezeichnet !)


'''Jetzt:'''
'''Jetzt:'''


Zusatzinformationen ( zusätzliche Mittelwerte beobachtet):
Zusatzinformationen (zusätzliche Mittelwerte beobachtet):


 
:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{i}^{{}}{{}}{{P}_{i}}{{V}_{i}}^{\sigma }=\left\langle {{V}_{i}}^{\sigma } \right\rangle  \\  
   & \sum\limits_{i}^{{}}{{}}{{P}_{i}}{{V}_{i}}^{\sigma }=\left\langle {{V}_{i}}^{\sigma } \right\rangle  \\  
  & \sigma =1,...,s \\  
  & \sigma =1,...,s \\  
Zeile 562: Zeile 420:
\end{align}</math>
\end{align}</math>


 
== Prinzip der vorurteilsfreien Schätzung ==
====Prinzip der vorurteilsfreien Schätzung====


Suche Minimum des Informationsgewinns
Suche Minimum des Informationsgewinns




<math>K\left( P,{{P}^{0}} \right)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln \frac{{{P}_{i}}}{{{P}_{i}}^{0}}</math>
:<math>K\left( P,{{P}^{0}} \right)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln \frac{{{P}_{i}}}{{{P}_{i}}^{0}}</math>




unter dieser Nebenbedingung !!
unter dieser Nebenbedingung!!


Also:
Also:




<math>\sum\limits_{i}^{{}}{{}}\left( \ln {{P}_{i}}-\ln {{P}_{i}}^{0}+1+\xi +{{\xi }_{\sigma }}{{V}_{i}}^{\sigma } \right)\delta {{P}_{i}}=0</math>
:<math>\sum\limits_{i}^{{}}{{}}\left( \ln {{P}_{i}}-\ln {{P}_{i}}^{0}+1+\xi +{{\xi }_{\sigma }}{{V}_{i}}^{\sigma } \right)\delta {{P}_{i}}=0</math>




mit neuen Lagrange- Multiplikatoren  
mit neuen Lagrange- Multiplikatoren  
<math>\xi ,{{\xi }_{\sigma }}</math>
:<math>\xi ,{{\xi }_{\sigma }}</math>






<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow 1+\xi =-\Xi  \\  
   & \Rightarrow 1+\xi =-\Xi  \\  
  & \sum\limits_{i}^{{}}{{}}\left( \ln {{P}_{i}}-\ln {{P}_{i}}^{0}-\Xi +{{\xi }_{\sigma }}{{V}_{i}}^{\sigma } \right)\delta {{P}_{i}}=0 \\  
  & \sum\limits_{i}^{{}}{{}}\left( \ln {{P}_{i}}-\ln {{P}_{i}}^{0}-\Xi +{{\xi }_{\sigma }}{{V}_{i}}^{\sigma } \right)\delta {{P}_{i}}=0 \\  
Zeile 594: Zeile 451:




<math>{{P}_{i}}^{0}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>
:<math>{{P}_{i}}^{0}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>
   folgt:
   folgt:




<math>\begin{align}
:<math>\begin{align}
   & K\left( P,{{P}^{0}} \right)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}-{{P}_{i}}\ln {{P}_{i}}^{0}+{{P}_{i}}^{0}\ln {{P}_{i}}^{0}-{{P}_{i}}^{0}\ln {{P}_{i}}^{0} \\  
   & K\left( P,{{P}^{0}} \right)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}-{{P}_{i}}\ln {{P}_{i}}^{0}+{{P}_{i}}^{0}\ln {{P}_{i}}^{0}-{{P}_{i}}^{0}\ln {{P}_{i}}^{0} \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}=I(P) \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}=I(P) \\  
Zeile 611: Zeile 468:


Da nun die Mittelwerte  
Da nun die Mittelwerte  
<math>\left\langle {{M}^{n}} \right\rangle ,{{\left\langle {{M}^{n}} \right\rangle }_{0}}</math>
:<math>\left\langle {{M}^{n}} \right\rangle ,{{\left\langle {{M}^{n}} \right\rangle }_{0}}</math>
nicht durch die Zusatzinfo geändert werden muss gelten:
nicht durch die Zusatzinfo geändert werden muss gelten:




<math>\begin{align}
:<math>\begin{align}
   & K\left( P,{{P}^{0}} \right)=I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}{{M}_{i}}^{n} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}^{0}{{M}_{i}}^{n} \right) \right) \\  
   & K\left( P,{{P}^{0}} \right)=I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}{{M}_{i}}^{n} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}^{0}{{M}_{i}}^{n} \right) \right) \\
  & =I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle -{{\left\langle {{M}^{n}} \right\rangle }_{0}} \right) \\  
  & =I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle -{{\left\langle {{M}^{n}} \right\rangle }_{0}} \right) \\  
  & keine\ddot{A}nderung \\  
  & keine\ddot{A}nderung \\  
Zeile 624: Zeile 481:




da diese Mittelwerte nicht durch die Zusatzinfo geändert werden !
da diese Mittelwerte nicht durch die Zusatzinfo geändert werden!




<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow K\left( P,{{P}^{0}} \right)=I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}{{M}_{i}}^{n} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}^{0}{{M}_{i}}^{n} \right) \right) \\  
   & \Rightarrow K\left( P,{{P}^{0}} \right)=I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}{{M}_{i}}^{n} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}^{0}{{M}_{i}}^{n} \right) \right) \\  
  & =I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle -{{\left\langle {{M}^{n}} \right\rangle }_{0}} \right)=I(P)-I({{P}^{0}}) \\  
  & =I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle -{{\left\langle {{M}^{n}} \right\rangle }_{0}} \right)=I(P)-I({{P}^{0}}) \\  
Zeile 633: Zeile 490:




Das heißt: Der Informationsgewinn entspricht gerade der Änderung der Shannon- Info !
Das heißt: Der Informationsgewinn entspricht gerade der Änderung der Shannon- Info!
 
==Siehe auch==
 
<references />

Aktuelle Version vom 12. September 2010, 23:57 Uhr




Motivation

Makroskopische thermodynamische Zustände sind gegeben durch die Mittelwerte

M(x)

von Mikroobservablen M(x), interpretiert als Zufallsvariable.

Rückschlüsse von

M(x)

auf die Wahrscheinlichkeitsverteilung

ρ(x)?


Methode

Vorurteilsfreie Schätzung (Jaynes, 1957): (unbiased guess; Prinzip des maximalen Nichtwissens)

  • Verallgemeinerung des Laplacschen Prinzips vom unzureichenden Grund.
    • (Minimum der Shannon- Information I(ρ(x))= Maximum des Nichtwissens S(ρ(x)) liefert Gleichverteilung)
  • Jetzt: Zusätzlich zur Normierung der Pi sind die Mittelwerte von m Zufallsvariablen:
Minn=1,2,...,mMn=i=1NPiMinn=1,...,mm<<N


Annahme:

Jedes Elementarereignis Ai hat gleiche a-priori- Wahrscheinlichkeit, das heißt OHNE zusätzliche Kenntnisse Mn gilt Gleichverteilung über den Ai.

Informationstheoretisches Prinzip

(nach (Jaynes 1922-1998))

Suche die Wahrscheinlichkeitsverteilung, die unter der Erfüllung aller bekannten Angaben als Nebenbedingung die minimale Information enthält:

Also: I(P)=i=1NPilnPi=!=Minimum

Nebenbed.:

i=1NPi=1Mn=i=1NPiMinn=1,...,m

Variation: δI=i=1N(lnPi+1)δPi


Es gilt: von den N Variationen δPi sind nur N-m-1 unabhängig voneinander!

iδPi=0

Lagrange- Multiplikator λ=(Ψ+1)

iMinδPi=0


Lagrange- Multiplikator λn

Anleitung: Wähle Ψ,λn so, dass die Koeffizienten von (m+1)δPi´s verschwinden, die übrigen N-(m+1) sind dann frei variierbar!

Somit:

δI=i=1N(lnPiΨ+λnMin)δPi=!=0


Vorsicht: Auch Summe über ν (Einsteinsche Summenkonvention!)


:Pi=exp(ΨλnMin) verallgemeinerte kanonische Verteilung


Die Lagrange- Multiplikatoren Ψ,λn sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt!

Kontinuierliche Ereignismenge

I(ρ)=ddxρ(x)lnρ(x)=!=Minimum


unter der Nebenbedingung


ddxρ(x)=1ddxρ(x)Mn(x)=Mnn=1,...,m


Durchführung einer Funktionalvariation:

δρ(x)


δI(ρ)=ddx(lnρ(x)+1)δρ(x)=0ddxδρ(x)=0ddxMn(x)δρ(x)=0ddx(lnρΨ+λnMn)δρ(x)=0ρ(x)=exp(ΨλnMn)


Vergleiche: A. Katz, Principles of Statistial Mechanics

ANMERKUNG Schubotz: Siehe auch [1]

Eigenschaften der verallgemeinerten kanonischen Verteilung

hier: noch rein informationstheoretisch,

später: wichtige Anwendungen in der Thermodynamik

Legendre- Transformation:

Sei Ψ(t) eine Bahn!

Dann ist M:=dΨ(t)dt die Geschwindigkeit.

Aus Ψ(M) kann die Bahn Ψ(t) noch nicht rekonstruiert werden, jedoch aus

I(M)=Ψ(t)M(t)t

mit t=t(M):


dIdM=dΨ(t)dtdtMdMMdtdMtM:=dΨ(t)dtdIdM=t


hieraus folgt

M(t)


eingesetzt in

I(M)=Ψ(t)M(t)tΨ(t)


durch Eisnetzen gewinnt man

Ψ(t)


Jedenfalls:


I(M)=Ψ(t)M(t)t


heißt legendre- Transformierte von

Ψ(t).


Anwendung auf die verallgemeinerte kanonische Verteilung:

Pi=exp(ΨλnMin)


Normierung:


iPi=1eΨ=iexp(λnMin)Z



Also gilt:


Ψ=Ψ(λ1,...,λm) und Pi sind durch (λ1,...,λm) vollständig parametrisiert.

Nebenbemerkung

Die Verteilung Pi bzw. ρ(x) wirkt auf dem Raum der Zufallsvariablen Min (diskret) bzw. xRd(kontinuierlich).

(λ1,...,λm) sind Parameter.


Mn sind Erwartungswerte MnR


Beispiel:
x=(q1,...,q3N,p1....,p3N)Γ (Phasenraumelement)

mit Γ als Phasenraum der kanonisch konjugierten Variablen


M(x)=i=13N(pi22m+V(qi)) mikrokanonisch Verteilungsfunktion


M(x)=i=13N(pi22m+V(qi)) als mittlere Energie

Shannon- Information:


I(P)=iPilnPi=iPi(ΨλnMin)=ΨλniPiMinI=Ψ(λ1,...λm)λnMn


Aus Ψ(λ1,...λm)=lniexp(λnMin)λnΨ=i(Min)exp(λnMin)iexp(λnMin)iexp(λnMin)=eΨλnΨ=i(Min)exp(ΨλnMin)exp(ΨλnMin)=PiλnΨ=i(Min)PiλnΨ=Mn


Damit können wir die Legendre- Transformation (verallgemeinert auf mehrere Variablen) identifizieren:


Ψ(t)Ψ(λ1,...λm) Variable λn


MMn=Ψλn neue Variable Mn


I(M)I=ΨλnMn Legendre- Transformierte von Ψ!

Es folgt:


IMn=λn


wegen:


IMn=ΨλmλmMnλmMnMmλnΨλm=MmIMn=λn


Zusammengefasst:


dI=λndMn

Dies ist in der Thermodynamik die Gibbsche Fundamentalgleichung!


Betachte Variation:


MnMn+δMn


dann:


λnλn+δλnΨΨ+δΨPiPi+δPi


Informationsgewinn:


K(P+δP,P)=i(Pi+δPi)ln(Pi+δPi)i(Pi+δPi)lnPii(Pi+δPi)ln(Pi+δPi)=I(P+δP)K(P+δP,P)=(Ψ+δΨ)(λn+δλn)(Mn+δMn)i(Pi+δPi)(ΨλnMni)i(Pi+δPi)(ΨλnMni)=Ψλni(Pi+δPi)Mni=Ψλn(Mn+δMn)K(P+δP,P)=(Ψ+δΨ)(λn+δλn)(Mn+δMn)Ψ+λn(Mn+δMn)=δΨδλn(Mn+δMn)


Wir können die variierten Funktionen für kleine Variationen

δλn

entwickeln:


δΨ=Ψλnδλn+122Ψλnλmδλnδλm+....δMn=Mnλnδλn+122Mnλnλmδλnδλm+....K(P+δP,P)=δΨδλn(Mn+δMn)=(ΨλnδλnMn)δλn+(12λmΨλnMnλm)δλnδλmΨλn=Mn(12λmΨλnMnλm)=12Mnλm(ΨλnδλnMn)=0K(P+δP,P)=12MnλmδλnδλmK(P+δP,P)0


Vergleiche oben

also folgt:


K(P+δP,P)=12Mnλmδλnδλm0Mnλm0


negativ semidefinit, für alle δλm


Definiere Suszeptibilitätsmatrix:


ηmn:=Mnλn=2Ψλnλm


Diese Matrix beschreibt die Änderung von Mm bei Variation von λn:


δM¯=η¯¯δλ¯


bzw.:


η~σλ:=λσMλ=2IMλMσ


In Matrixschreibweise:


δλ¯=η¯¯~δM¯η¯¯~=η¯¯1


Wegen


λn(Ψλm)=λm(Ψλn)(Ψλm)=Mmλn(Ψλm)=ηmn(Ψλn)=Mnλm(Ψλn)=ηnm


Somit:

ηnm ist symmetrisch

AusK(P+δP,P)0 folgt:


ηmnδλmδλn=δMnδλn=η~nmδMnδMm0


Also: negativ- semidefinite quadratisceh Form:


ηnn0η~nn0


Nebenbemerkung:

Also sind I(Mn) und Ψ(λn) konvex!

Zusammenhang mit der Korrelationsmatrix

Qmn:=ΔMmΔMn ist Korrelationsmatrix (siehe oben)
=MmMnc 2. Kumulante


=2Γ(α)αmαn|α=0 mit Kumulantenerzeugender


Γ(α)=lnexp(αnMn)=lniPiexp(αnMin)=lnieΨ(λnαn)Min=ln[eΨie(λnαn)Min]=Ψ(λ)+ln[ie(λnαn)Min]ln[ie(λnαn)Min]=Ψ(λα)Γ(α)=Ψ(λ)Ψ(λα)Qmn=2Ψ(λα)αmαn|α=0=2Ψ(λ)λmλn=ηmn


Suszeptibilität!

Also: Die Korrelationsmatrix ist das Negative der Suszeptibilität!!

Also:

Qmn:=ΔMmΔMn=Mmλn=Mnλm



Fluktuations/ Dissipations- Theorem:

Fluktuationen
Zufällige Schwankungen um den Mittelwert
Dissipation
Systematische Änderung der Mittelwerte!

Korrektur einer Verteilung durch Zusatzinformationen

Sei P0 die Verteilung, die I(P) unter Kenntnis der Nebenbedingungen

iPi0=1iPi0Mim=Mmm=1,...,m
minimalisiert (Vorsicht: Index und Laufende sind ungünstigerweise gleich bezeichnet!)

Jetzt:

Zusatzinformationen (zusätzliche Mittelwerte beobachtet):

iPiViσ=Viσσ=1,...,siPi=1

Prinzip der vorurteilsfreien Schätzung

Suche Minimum des Informationsgewinns


K(P,P0)=iPilnPiPi0


unter dieser Nebenbedingung!!

Also:


i(lnPilnPi0+1+ξ+ξσViσ)δPi=0


mit neuen Lagrange- Multiplikatoren

ξ,ξσ


1+ξ=Ξi(lnPilnPi0Ξ+ξσViσ)δPi=0Pi=Pi0exp(ΞξσViσ)


Mit


Pi0=exp(ΨλnMin)
 folgt:


K(P,P0)=iPilnPiPilnPi0+Pi0lnPi0Pi0lnPi0iPilnPi=I(P)iPi0lnPi0=I(P0)PilnPi0+Pi0lnPi0=i(PiPi0)lnPi0lnPi0=ΨλnMini(PiPi0)(ΨλnMin)=λn(i(PiMin)i(Pi0Min))i(PiMin)=Mni(Pi0Min)=Mn0


Da nun die Mittelwerte

Mn,Mn0

nicht durch die Zusatzinfo geändert werden muss gelten:


K(P,P0)=I(P)I(P0)+λn(i(PiMin)i(Pi0Min))=I(P)I(P0)+λn(MnMn0)keineA¨nderungλn(MnMn0)=0Mn=Mn0


da diese Mittelwerte nicht durch die Zusatzinfo geändert werden!


K(P,P0)=I(P)I(P0)+λn(i(PiMin)i(Pi0Min))=I(P)I(P0)+λn(MnMn0)=I(P)I(P0)


Das heißt: Der Informationsgewinn entspricht gerade der Änderung der Shannon- Info!

Siehe auch

  1. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 5.4.13 (Kap 5.4.3 S46)