Verallgemeinerte kanonische Verteilung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
K Interpunktion, replaced: , → , (16), ( → ( (7)
 
(6 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
== Motivation ==
== Motivation ==
Makroskopische thermodynamische Zustände sind gegeben durch die Mittelwerte  
Makroskopische thermodynamische Zustände sind gegeben durch die Mittelwerte  
<math>\left\langle M(x) \right\rangle </math>
:<math>\left\langle M(x) \right\rangle </math>
von Mikroobservablen M(x), interpretiert als Zufallsvariable.
von Mikroobservablen M(x), interpretiert als Zufallsvariable.


Rückschlüsse von  
Rückschlüsse von  
<math>\left\langle M(x) \right\rangle </math>
:<math>\left\langle M(x) \right\rangle </math>
auf die Wahrscheinlichkeitsverteilung  
auf die Wahrscheinlichkeitsverteilung  
<math>\rho (x)?</math>
:<math>\rho (x)?</math>




== Methode ==
== Methode ==
Vorurteilsfreie Schätzung ( Jaynes , 1957):
Vorurteilsfreie Schätzung (Jaynes, 1957):
(unbiased guess; Prinzip des maximalen Nichtwissens)
(unbiased guess; Prinzip des maximalen Nichtwissens)


* Verallgemeinerung des Laplacschen Prinzips vom unzureichenden Grund.
* Verallgemeinerung des Laplacschen Prinzips vom unzureichenden Grund.
** ( Minimum der Shannon- Information <math>I\left( \rho (x) \right)</math>= Maximum des Nichtwissens <math>S\left( \rho (x) \right)</math> liefert Gleichverteilung)
** (Minimum der Shannon- Information <math>I\left( \rho (x) \right)</math>= Maximum des Nichtwissens <math>S\left( \rho (x) \right)</math> liefert Gleichverteilung)
* '''Jetzt: '''Zusätzlich zur Normierung der P<sub>i</sub> sind die Mittelwerte von m Zufallsvariablen:
* '''Jetzt: '''Zusätzlich zur Normierung der P<sub>i</sub> sind die Mittelwerte von m Zufallsvariablen:


Zeile 31: Zeile 31:
<u>'''Annahme:'''</u>
<u>'''Annahme:'''</u>


Jedes Elementarereignis <math>{{A}_{i}}</math> hat gleiche '''a-priori'''- Wahrscheinlichkeit , das heißt OHNE zusätzliche Kenntnisse <math>\left\langle {{M}^{n}} \right\rangle </math> gilt Gleichverteilung über den <math>{{A}_{i}}</math>.
Jedes Elementarereignis <math>{{A}_{i}}</math> hat gleiche '''a-priori'''- Wahrscheinlichkeit, das heißt OHNE zusätzliche Kenntnisse <math>\left\langle {{M}^{n}} \right\rangle </math> gilt Gleichverteilung über den <math>{{A}_{i}}</math>.


== Informationstheoretisches Prinzip==
== Informationstheoretisches Prinzip==
(nach (Jaynes 1922-1998))
(nach (Jaynes 1922-1998))


Suche die Wahrscheinlichkeitsverteilung , die unter der Erfüllung aller bekannten Angaben als Nebenbedingung die '''minimale Information''' enthält:
Suche die Wahrscheinlichkeitsverteilung, die unter der Erfüllung aller bekannten Angaben als Nebenbedingung die '''minimale Information''' enthält:


Also: <math>I(P)=\sum\limits_{i=1}^{N}{{}}{{P}_{i}}\ln {{P}_{i}}=!=Minimum</math>
Also: <math>I(P)=\sum\limits_{i=1}^{N}{{}}{{P}_{i}}\ln {{P}_{i}}=!=Minimum</math>
Zeile 50: Zeile 50:




Es gilt: von den  N Variationen  <math>\delta {{P}_{i}}</math>  sind nur N-m-1  unabhängig voneinander !
Es gilt: von den  N Variationen  <math>\delta {{P}_{i}}</math>  sind nur N-m-1  unabhängig voneinander!


:<math>\sum\limits_{i}^{{}}{{}}\delta {{P}_{i}}=0</math>
:<math>\sum\limits_{i}^{{}}{{}}\delta {{P}_{i}}=0</math>
Zeile 61: Zeile 61:
Lagrange- Multiplikator <math>{{\lambda }_{n}}</math>
Lagrange- Multiplikator <math>{{\lambda }_{n}}</math>


<u>Anleitung</u>: Wähle <math>\Psi ,{{\lambda }_{n}}</math> so, dass die Koeffizienten von <math>\left( m+1 \right)\delta {{P}_{i}}</math>´s verschwinden, die übrigen N-(m+1) sind dann frei variierbar !
<u>Anleitung</u>: Wähle <math>\Psi ,{{\lambda }_{n}}</math> so, dass die Koeffizienten von <math>\left( m+1 \right)\delta {{P}_{i}}</math>´s verschwinden, die übrigen N-(m+1) sind dann frei variierbar!


Somit:
Somit:
Zeile 71: Zeile 71:




:<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math> Die {{FB|verallgemeinerte kanonische Verteilung}}
{{Def|:<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math> '''verallgemeinerte kanonische Verteilung'''|verallgemeinerte kanonische Verteilung}}


Die Lagrange- Multiplikatoren <math>\Psi ,{{\lambda }_{n}}</math>  sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt !
Die Lagrange- Multiplikatoren <math>\Psi ,{{\lambda }_{n}}</math>  sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt!


===Kontinuierliche Ereignismenge===
===Kontinuierliche Ereignismenge===
Zeile 117: Zeile 117:
{{FB|Legendre- Transformation}}:
{{FB|Legendre- Transformation}}:


Sei <math>\Psi (t)</math> eine Bahn !
Sei <math>\Psi (t)</math> eine Bahn!


Dann ist <math>M:=\frac{d\Psi (t)}{dt}</math> die Geschwindigkeit.
Dann ist <math>M:=\frac{d\Psi (t)}{dt}</math> die Geschwindigkeit.
Zeile 126: Zeile 126:




<math>\begin{align}
:<math>\begin{align}
   & \frac{dI}{dM}=\frac{d\Psi (t)}{dt}\frac{dtM}{dM}-M\frac{dt}{dM}-t \\  
   & \frac{dI}{dM}=\frac{d\Psi (t)}{dt}\frac{dtM}{dM}-M\frac{dt}{dM}-t \\  
  & M:=\frac{d\Psi (t)}{dt} \\  
  & M:=\frac{d\Psi (t)}{dt} \\  
Zeile 134: Zeile 134:


hieraus folgt  
hieraus folgt  
<math>M(t)</math>
:<math>M(t)</math>




eingesetzt in  
eingesetzt in  
<math>I(M)=\Psi (t)-M(t)t\Rightarrow \Psi (t)</math>
:<math>I(M)=\Psi (t)-M(t)t\Rightarrow \Psi (t)</math>




durch Eisnetzen gewinnt man  
durch Eisnetzen gewinnt man  
<math>\Psi (t)</math>
:<math>\Psi (t)</math>




Zeile 148: Zeile 148:




<math>I(M)=\Psi (t)-M(t)t</math>
:<math>I(M)=\Psi (t)-M(t)t</math>




heißt legendre- Transformierte von  
heißt legendre- Transformierte von  
<math>\Psi (t)</math>
:<math>\Psi (t)</math>.
.
 


=== Anwendung auf die verallgemeinerte kanonische Verteilung: ===
=== Anwendung auf die verallgemeinerte kanonische Verteilung: ===


<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>
:<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>




Normierung:
Normierung:


 
{{Gln|
<math>\sum\limits_{i}^{{}}{{}}{{P}_{i}}=1\Rightarrow {{e}^{-\Psi }}=\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)\equiv Z</math>
:<math>\sum\limits_{i}^{{}}{{}}{{P}_{i}}=1\Rightarrow {{e}^{-\Psi }}=\sum_i \exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)\equiv Z</math>}}




Zeile 169: Zeile 169:




<math>\Psi =\Psi \left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
:<math>\Psi =\Psi \left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> und <math>{{P}_{i}}</math> sind durch <math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> vollständig parametrisiert.
  und
<math>{{P}_{i}}</math>
sind durch  
<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
vollständig parametrisiert.


'''Nebenbemerkung'''
'''Nebenbemerkung'''


Die Verteilung  
Die Verteilung <math>{{P}_{i}}</math> bzw. <math>\rho \left( x \right)</math> wirkt auf dem Raum der Zufallsvariablen <math>{{M}_{i}}^{n}</math> (diskret) bzw. <math>x\in {{R}^{d}}</math>(kontinuierlich).
<math>{{P}_{i}}</math>
:<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> sind Parameter.
bzw.  
<math>\rho \left( x \right)</math>
wirkt auf dem Raum der Zufallsvariablen  
<math>{{M}_{i}}^{n}</math>
(diskret) bzw.  
<math>x\in {{R}^{d}}</math>
(kontinuierlich).
 
 
<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
sind Parameter.
 
 
<math>\left\langle {{M}^{n}} \right\rangle </math>
sind Erwartungswerte
<math>\left\langle {{M}^{n}} \right\rangle \in R</math>
 


'''Beispiel:'''


:<math>\left\langle {{M}^{n}} \right\rangle </math> sind Erwartungswerte <math>\left\langle {{M}^{n}} \right\rangle \in R</math>


<math>x=\left( {{q}_{1}},...,{{q}_{3N}},{{p}_{1}}....,{{p}_{3N}} \right)\in \Gamma </math>
  ( Phasenraumelement)


mit
{{Beispiel|'''Beispiel:'''
<math>\Gamma </math>
:<math>x=\left( {{q}_{1}},...,{{q}_{3N}},{{p}_{1}}....,{{p}_{3N}} \right)\in \Gamma </math> (Phasenraumelement)
als Phasenraum der kanonisch konjugierten Variablen


mit <math>\Gamma </math> als Phasenraum der kanonisch konjugierten Variablen


<math>M\left( x \right)=\sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right)</math>
mikrokanonisch Verteilungsfunktion


:<math>M\left( x \right)=\sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right)</math> mikrokanonisch Verteilungsfunktion


<math>\left\langle M\left( x \right) \right\rangle =\left\langle \sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right) \right\rangle </math>
als mittlere Energie


:<math>\left\langle M\left( x \right) \right\rangle =\left\langle \sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right) \right\rangle </math> als mittlere Energie
}}
'''Shannon- Information:'''
'''Shannon- Information:'''




<math>\begin{align}
:<math>\begin{align}
   & I(P)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)=\Psi -{{\lambda }_{n}}\sum\limits_{i}^{{}}{{}}{{P}_{i}}{{M}_{i}}^{n} \\  
   & I(P)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)=\Psi -{{\lambda }_{n}}\sum\limits_{i}^{{}}{{}}{{P}_{i}}{{M}_{i}}^{n} \\  
  & I=\Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)-{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle  \\  
  & I=\Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)-{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle  \\  
Zeile 225: Zeile 200:




Aus
Aus <math>\begin{align}
 
 
<math>\begin{align}
   & \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)=-\ln \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\  
   & \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)=-\ln \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\  
  & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =-\frac{\sum\limits_{i}^{{}}{{}}\left( -{{M}_{i}}^{n} \right)\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)}{\sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)} \\   
  & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =-\frac{\sum\limits_{i}^{{}}{{}}\left( -{{M}_{i}}^{n} \right)\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)}{\sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)} \\   
Zeile 239: Zeile 211:




Damit können wir die Legendre- Transformation ( verallgemeinert auf mehrere Variablen) identifizieren:
Damit können wir die Legendre- Transformation (verallgemeinert auf mehrere Variablen) identifizieren:




<math>\Psi (t)\to \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)</math>
:<math>\Psi (t)\to \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)</math> '''Variable''' <math>{{\lambda }_{n}}</math>
  '''Variable
<math>{{\lambda }_{n}}</math>
'''




<math>M\to \left\langle {{M}^{n}} \right\rangle =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}</math>
:<math>M\to \left\langle {{M}^{n}} \right\rangle =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}</math> neue Variable  <math>\left\langle {{M}^{n}} \right\rangle </math>
  neue Variable   
<math>\left\langle {{M}^{n}} \right\rangle </math>






<math>I\left( M \right)\to I=\Psi -{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle </math>
:<math>I\left( M \right)\to I=\Psi -{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle </math> Legendre- Transformierte von <math>\Psi </math>!
  Legendre- Transformierte von  
<math>\Psi </math>
!


Es folgt:
Es folgt:




<math>\frac{\partial I}{\partial \left\langle {{M}^{n}} \right\rangle }=-{{\lambda }_{n}}</math>
:<math>\frac{\partial I}{\partial \left\langle {{M}^{n}} \right\rangle }=-{{\lambda }_{n}}</math>




Zeile 268: Zeile 232:




<math>\begin{align}
:<math>\begin{align}
   & \frac{\partial I}{\partial \left\langle {{M}^{n}} \right\rangle }=\frac{\partial \Psi }{\partial {{\lambda }_{m}}}\frac{\partial {{\lambda }_{m}}}{\partial \left\langle {{M}^{n}} \right\rangle }-\frac{\partial {{\lambda }_{m}}}{\partial \left\langle {{M}^{n}} \right\rangle }\left\langle {{M}^{m}} \right\rangle -{{\lambda }_{n}} \\  
   & \frac{\partial I}{\partial \left\langle {{M}^{n}} \right\rangle }=\frac{\partial \Psi }{\partial {{\lambda }_{m}}}\frac{\partial {{\lambda }_{m}}}{\partial \left\langle {{M}^{n}} \right\rangle }-\frac{\partial {{\lambda }_{m}}}{\partial \left\langle {{M}^{n}} \right\rangle }\left\langle {{M}^{m}} \right\rangle -{{\lambda }_{n}} \\  
  & \frac{\partial \Psi }{\partial {{\lambda }_{m}}}=\left\langle {{M}^{m}} \right\rangle  \\  
  & \frac{\partial \Psi }{\partial {{\lambda }_{m}}}=\left\langle {{M}^{m}} \right\rangle  \\  
Zeile 277: Zeile 241:
Zusammengefasst:
Zusammengefasst:


{{Gln|
:<math>dI=-{{\lambda }_{n}}d\left\langle {{M}^{n}} \right\rangle </math>


<math>dI=-{{\lambda }_{n}}d\left\langle {{M}^{n}} \right\rangle </math>
Dies ist in der Thermodynamik die '''Gibbsche Fundamentalgleichung'''!|Gibbsche Fundamentalgleichung}}
 
 
Dies ist in der Thermodynamik die Gibbsche Fundamentalgleichung !!


Betachte Variation:
Betachte Variation:




<math>\left\langle {{M}^{n}} \right\rangle \to \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle </math>
:<math>\left\langle {{M}^{n}} \right\rangle \to \left\langle {{M}^{n}} \right\rangle +\delta \left\langle {{M}^{n}} \right\rangle </math>




Zeile 292: Zeile 255:




<math>\begin{align}
:<math>\begin{align}
   & {{\lambda }_{n}}\to {{\lambda }_{n}}+\delta {{\lambda }_{n}} \\  
   & {{\lambda }_{n}}\to {{\lambda }_{n}}+\delta {{\lambda }_{n}} \\  
  & \Psi \to \Psi +\delta \Psi  \\  
  & \Psi \to \Psi +\delta \Psi  \\  
Zeile 302: Zeile 265:




<math>\begin{align}
:<math>\begin{align}
   & K\left( P+\delta P,P \right)=\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln {{P}_{i}} \\  
   & K\left( P+\delta P,P \right)=\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln {{P}_{i}} \\  
  & \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)=I\left( P+\delta P \right) \\  
  & \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}+\delta {{P}_{i}} \right)\ln \left( {{P}_{i}}+\delta {{P}_{i}} \right)=I\left( P+\delta P \right) \\  
Zeile 313: Zeile 276:


Wir können die variierten Funktionen für kleine Variationen  
Wir können die variierten Funktionen für kleine Variationen  
<math>\delta {{\lambda }_{n}}</math>
:<math>\delta {{\lambda }_{n}}</math>
entwickeln:
entwickeln:




<math>\begin{align}
:<math>\begin{align}
   & \delta \Psi =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\  
   & \delta \Psi =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\  
  & \delta \left\langle {{M}^{n}} \right\rangle =\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\  
  & \delta \left\langle {{M}^{n}} \right\rangle =\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}\delta {{\lambda }_{n}}+\frac{1}{2}\frac{{{\partial }^{2}}\left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}+.... \\  
Zeile 333: Zeile 296:




<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow K\left( P+\delta P,P \right)=-\frac{1}{2}\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}\ge 0 \\  
   & \Rightarrow K\left( P+\delta P,P \right)=-\frac{1}{2}\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\delta {{\lambda }_{n}}\delta {{\lambda }_{m}}\ge 0 \\  
  & \Rightarrow \frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\le 0 \\  
  & \Rightarrow \frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}\le 0 \\  
Zeile 339: Zeile 302:




negativ semidefinit, für alle  
negativ semidefinit, für alle <math>\delta {{\lambda }_{m}}</math>
<math>\delta {{\lambda }_{m}}</math>




Definiere Suszeptibilitätsmatrix:
Definiere {{FB|Suszeptibilitätsmatrix}}:




<math>{{\eta }^{mn}}:=\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}</math>
:<math>{{\eta }^{mn}}:=\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}\partial {{\lambda }_{m}}}</math>




Diese Matrix beschreibt die Änderung von  
Diese Matrix beschreibt die Änderung von <math>\left\langle {{M}^{m}} \right\rangle </math> bei Variation von <math>{{\lambda }_{n}}</math>:
<math>\left\langle {{M}^{m}} \right\rangle </math>




bei Variation von
:<math>\delta \left\langle {\bar{M}} \right\rangle =\bar{\bar{\eta }}\delta \bar{\lambda }</math>
<math>{{\lambda }_{n}}</math>
:
 
 
<math>\delta \left\langle {\bar{M}} \right\rangle =\bar{\bar{\eta }}\delta \bar{\lambda }</math>




Zeile 364: Zeile 320:




<math>{{\tilde{\eta }}_{\sigma \lambda }}:=\frac{\partial {{\lambda }_{\sigma }}}{\partial \left\langle {{M}^{\lambda }} \right\rangle }=-\frac{{{\partial }^{2}}I}{\partial \left\langle {{M}^{\lambda }} \right\rangle \partial \left\langle {{M}^{\sigma }} \right\rangle }</math>
:<math>{{\tilde{\eta }}_{\sigma \lambda }}:=\frac{\partial {{\lambda }_{\sigma }}}{\partial \left\langle {{M}^{\lambda }} \right\rangle }=-\frac{{{\partial }^{2}}I}{\partial \left\langle {{M}^{\lambda }} \right\rangle \partial \left\langle {{M}^{\sigma }} \right\rangle }</math>




Zeile 370: Zeile 326:




<math>\begin{align}
:<math>\begin{align}
   & \delta \bar{\lambda }=\tilde{\bar{\bar{\eta }}}\delta \left\langle {\bar{M}} \right\rangle  \\  
   & \delta \bar{\lambda }=\tilde{\bar{\bar{\eta }}}\delta \left\langle {\bar{M}} \right\rangle  \\  
  & \tilde{\bar{\bar{\eta }}}={{{\bar{\bar{\eta }}}}^{-1}} \\  
  & \tilde{\bar{\bar{\eta }}}={{{\bar{\bar{\eta }}}}^{-1}} \\  
Zeile 379: Zeile 335:




<math>\begin{align}
:<math>\begin{align}
   & \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\frac{\partial }{\partial {{\lambda }_{m}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right) \\  
   & \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\frac{\partial }{\partial {{\lambda }_{m}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{n}}} \right) \\  
  & \left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\left\langle {{M}^{m}} \right\rangle \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)={{\eta }^{mn}} \\  
  & \left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)=\left\langle {{M}^{m}} \right\rangle \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\left( \frac{\partial \Psi }{\partial {{\lambda }_{m}}} \right)={{\eta }^{mn}} \\  
Zeile 387: Zeile 343:


Somit:
Somit:
:<math>{{\eta }^{nm}}</math>  ist symmetrisch


 
Aus<math>K\left( P+\delta P,P \right)\ge 0</math> folgt:
<math>{{\eta }^{nm}}</math>
  ist symmetrisch
 
Aus
 
 
<math>K\left( P+\delta P,P \right)\ge 0</math>
 
 
folgt:




<math>{{\eta }^{mn}}\delta {{\lambda }_{m}}\delta {{\lambda }_{n}}=\delta \left\langle {{M}^{n}} \right\rangle \delta {{\lambda }_{n}}={{\tilde{\eta }}_{nm}}\delta \left\langle {{M}^{n}} \right\rangle \delta \left\langle {{M}^{m}} \right\rangle \le 0</math>
:<math>{{\eta }^{mn}}\delta {{\lambda }_{m}}\delta {{\lambda }_{n}}=\delta \left\langle {{M}^{n}} \right\rangle \delta {{\lambda }_{n}}={{\tilde{\eta }}_{nm}}\delta \left\langle {{M}^{n}} \right\rangle \delta \left\langle {{M}^{m}} \right\rangle \le 0</math>




Zeile 407: Zeile 354:




<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow {{\eta }^{nn}}\le 0 \\  
   & \Rightarrow {{\eta }^{nn}}\le 0 \\  
  & {{{\tilde{\eta }}}_{nn}}\le 0 \\  
  & {{{\tilde{\eta }}}_{nn}}\le 0 \\  
Zeile 415: Zeile 362:
'''Nebenbemerkung:'''
'''Nebenbemerkung:'''


Also sind
Also sind <math>I\left( \left\langle {{M}^{n}} \right\rangle  \right)</math> und <math>-\Psi \left( {{\lambda }_{n}} \right)</math> konvex!
 
 
<math>I\left( \left\langle {{M}^{n}} \right\rangle  \right)</math>
 
 
und
 
 
<math>-\Psi \left( {{\lambda }_{n}} \right)</math>
 
 
konvex !


== Zusammenhang mit der Korrelationsmatrix ==
== Zusammenhang mit der Korrelationsmatrix ==


<math>{{Q}^{mn}}:=\left\langle \Delta {{M}^{m}}\Delta {{M}^{n}} \right\rangle </math>
:<math>{{Q}^{mn}}:=\left\langle \Delta {{M}^{m}}\Delta {{M}^{n}} \right\rangle </math> ist Korrelationsmatrix (siehe oben)
  ist Korrelationsmatrix ( siehe oben)


:<math>={{\left\langle {{M}^{m}}{{M}^{n}} \right\rangle }_{c}}</math>  2. Kumulante


<math>={{\left\langle {{M}^{m}}{{M}^{n}} \right\rangle }_{c}}</math>
  2. Kumulante


:<math>={{\left. \frac{{{\partial }^{2}}\Gamma \left( \alpha  \right)}{\partial {{\alpha }_{m}}\partial {{\alpha }_{n}}} \right|}_{\alpha =0}}</math>  mit Kumulantenerzeugender


<math>={{\left. \frac{{{\partial }^{2}}\Gamma \left( \alpha  \right)}{\partial {{\alpha }_{m}}\partial {{\alpha }_{n}}} \right|}_{\alpha =0}}</math>
  mit Kumulantenerzeugender


 
:<math>\begin{align}
<math>\begin{align}
   & \Gamma \left( \alpha  \right)=\ln \left\langle \exp \left( {{\alpha }_{n}}{{M}^{n}} \right) \right\rangle =\ln \sum\limits_{i}^{{}}{{}}{{P}_{i}}\exp \left( {{\alpha }_{n}}{{M}_{i}}^{n} \right)=\ln \sum\limits_{i}^{{}}{{}}{{e}^{\Psi -\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \\  
   & \Gamma \left( \alpha  \right)=\ln \left\langle \exp \left( {{\alpha }_{n}}{{M}^{n}} \right) \right\rangle =\ln \sum\limits_{i}^{{}}{{}}{{P}_{i}}\exp \left( {{\alpha }_{n}}{{M}_{i}}^{n} \right)=\ln \sum\limits_{i}^{{}}{{}}{{e}^{\Psi -\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \\  
  & =\ln \left[ {{e}^{\Psi }}\cdot \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right]=\Psi \left( \lambda  \right)+\ln \left[ \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right] \\  
  & =\ln \left[ {{e}^{\Psi }}\cdot \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right]=\Psi \left( \lambda  \right)+\ln \left[ \sum\limits_{i}^{{}}{{}}{{e}^{-\left( {{\lambda }_{n}}-{{\alpha }_{n}} \right){{M}_{i}}^{n}}} \right] \\  
Zeile 452: Zeile 383:




Suszeptibilität !
Suszeptibilität!


Also: Die Korrelationsmatrix ist das Negative der Suszeptibilität !!
Also: Die Korrelationsmatrix ist das Negative der Suszeptibilität!!


Also:
Also:
{{Gln|


 
:<math>{{Q}^{mn}}:=\left\langle \Delta {{M}^{m}}\Delta {{M}^{n}} \right\rangle =-\frac{\partial \left\langle {{M}^{m}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}</math> |Fluktuations-Dissipations-Theorem}}
<math>{{Q}^{mn}}:=\left\langle \Delta {{M}^{m}}\Delta {{M}^{n}} \right\rangle =-\frac{\partial \left\langle {{M}^{m}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{m}}}</math>




Fluktuations/ Dissipations- Theorem:
Fluktuations/ Dissipations- Theorem:


Fluktuationen: Zufällige Schwankungen um den Mittelwert
;{{FB|Fluktuationen}}: Zufällige Schwankungen um den Mittelwert


Dissipation: Systematische Änderung der Mittelwerte !
;{{FB|Dissipation}}: Systematische Änderung der Mittelwerte!


== Korrektur einer Verteilung durch Zusatzinformationen ==
== Korrektur einer Verteilung durch Zusatzinformationen ==


Sei
Sei <math>{{P}^{0}}</math> die Verteilung, die <math>I\left( P \right)</math> unter Kenntnis der '''Nebenbedingungen'''


 
:<math>\begin{align}
<math>{{P}^{0}}</math>
die Verteilung, die
<math>I\left( P \right)</math>
unter Kenntnis der Nebenbedingungen
 
 
<math>\begin{align}
   & \sum\limits_{i}^{{}}{{}}{{P}_{i}}^{0}=1 \\  
   & \sum\limits_{i}^{{}}{{}}{{P}_{i}}^{0}=1 \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}^{0}{{M}_{i}}^{m}=\left\langle {{M}^{m}} \right\rangle  \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}^{0}{{M}_{i}}^{m}=\left\langle {{M}^{m}} \right\rangle  \\  
  & m=1,...,m \\  
  & m=1,...,m \\  
\end{align}</math>
\end{align}</math>
 
: minimalisiert (Vorsicht: Index und Laufende sind ungünstigerweise gleich bezeichnet!)
 
minimalisiert ( Vorsicht: Index und Laufende sind ungünstigerweise gleich bezeichnet !)


'''Jetzt:'''
'''Jetzt:'''


Zusatzinformationen ( zusätzliche Mittelwerte beobachtet):
Zusatzinformationen (zusätzliche Mittelwerte beobachtet):


 
:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{i}^{{}}{{}}{{P}_{i}}{{V}_{i}}^{\sigma }=\left\langle {{V}_{i}}^{\sigma } \right\rangle  \\  
   & \sum\limits_{i}^{{}}{{}}{{P}_{i}}{{V}_{i}}^{\sigma }=\left\langle {{V}_{i}}^{\sigma } \right\rangle  \\  
  & \sigma =1,...,s \\  
  & \sigma =1,...,s \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}=1 \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}=1 \\  
\end{align}</math>
\end{align}</math>


== Prinzip der vorurteilsfreien Schätzung ==
== Prinzip der vorurteilsfreien Schätzung ==
Zeile 505: Zeile 425:




<math>K\left( P,{{P}^{0}} \right)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln \frac{{{P}_{i}}}{{{P}_{i}}^{0}}</math>
:<math>K\left( P,{{P}^{0}} \right)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln \frac{{{P}_{i}}}{{{P}_{i}}^{0}}</math>




unter dieser Nebenbedingung !!
unter dieser Nebenbedingung!!


Also:
Also:




<math>\sum\limits_{i}^{{}}{{}}\left( \ln {{P}_{i}}-\ln {{P}_{i}}^{0}+1+\xi +{{\xi }_{\sigma }}{{V}_{i}}^{\sigma } \right)\delta {{P}_{i}}=0</math>
:<math>\sum\limits_{i}^{{}}{{}}\left( \ln {{P}_{i}}-\ln {{P}_{i}}^{0}+1+\xi +{{\xi }_{\sigma }}{{V}_{i}}^{\sigma } \right)\delta {{P}_{i}}=0</math>




mit neuen Lagrange- Multiplikatoren  
mit neuen Lagrange- Multiplikatoren  
<math>\xi ,{{\xi }_{\sigma }}</math>
:<math>\xi ,{{\xi }_{\sigma }}</math>






<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow 1+\xi =-\Xi  \\  
   & \Rightarrow 1+\xi =-\Xi  \\  
  & \sum\limits_{i}^{{}}{{}}\left( \ln {{P}_{i}}-\ln {{P}_{i}}^{0}-\Xi +{{\xi }_{\sigma }}{{V}_{i}}^{\sigma } \right)\delta {{P}_{i}}=0 \\  
  & \sum\limits_{i}^{{}}{{}}\left( \ln {{P}_{i}}-\ln {{P}_{i}}^{0}-\Xi +{{\xi }_{\sigma }}{{V}_{i}}^{\sigma } \right)\delta {{P}_{i}}=0 \\  
Zeile 531: Zeile 451:




<math>{{P}_{i}}^{0}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>
:<math>{{P}_{i}}^{0}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math>
   folgt:
   folgt:




<math>\begin{align}
:<math>\begin{align}
   & K\left( P,{{P}^{0}} \right)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}-{{P}_{i}}\ln {{P}_{i}}^{0}+{{P}_{i}}^{0}\ln {{P}_{i}}^{0}-{{P}_{i}}^{0}\ln {{P}_{i}}^{0} \\  
   & K\left( P,{{P}^{0}} \right)=\sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}-{{P}_{i}}\ln {{P}_{i}}^{0}+{{P}_{i}}^{0}\ln {{P}_{i}}^{0}-{{P}_{i}}^{0}\ln {{P}_{i}}^{0} \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}=I(P) \\  
  & \sum\limits_{i}^{{}}{{}}{{P}_{i}}\ln {{P}_{i}}=I(P) \\  
Zeile 548: Zeile 468:


Da nun die Mittelwerte  
Da nun die Mittelwerte  
<math>\left\langle {{M}^{n}} \right\rangle ,{{\left\langle {{M}^{n}} \right\rangle }_{0}}</math>
:<math>\left\langle {{M}^{n}} \right\rangle ,{{\left\langle {{M}^{n}} \right\rangle }_{0}}</math>
nicht durch die Zusatzinfo geändert werden muss gelten:
nicht durch die Zusatzinfo geändert werden muss gelten:




<math>\begin{align}
:<math>\begin{align}
   & K\left( P,{{P}^{0}} \right)=I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}{{M}_{i}}^{n} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}^{0}{{M}_{i}}^{n} \right) \right) \\
   & K\left( P,{{P}^{0}} \right)=I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}{{M}_{i}}^{n} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}^{0}{{M}_{i}}^{n} \right) \right) \\
  & =I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle -{{\left\langle {{M}^{n}} \right\rangle }_{0}} \right) \\  
  & =I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle -{{\left\langle {{M}^{n}} \right\rangle }_{0}} \right) \\  
Zeile 561: Zeile 481:




da diese Mittelwerte nicht durch die Zusatzinfo geändert werden !
da diese Mittelwerte nicht durch die Zusatzinfo geändert werden!




<math>\begin{align}
:<math>\begin{align}
   & \Rightarrow K\left( P,{{P}^{0}} \right)=I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}{{M}_{i}}^{n} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}^{0}{{M}_{i}}^{n} \right) \right) \\  
   & \Rightarrow K\left( P,{{P}^{0}} \right)=I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}{{M}_{i}}^{n} \right)-\sum\limits_{i}^{{}}{{}}\left( {{P}_{i}}^{0}{{M}_{i}}^{n} \right) \right) \\  
  & =I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle -{{\left\langle {{M}^{n}} \right\rangle }_{0}} \right)=I(P)-I({{P}^{0}}) \\  
  & =I(P)-I({{P}^{0}})+{{\lambda }_{n}}\left( \left\langle {{M}^{n}} \right\rangle -{{\left\langle {{M}^{n}} \right\rangle }_{0}} \right)=I(P)-I({{P}^{0}}) \\  
Zeile 570: Zeile 490:




Das heißt: Der Informationsgewinn entspricht gerade der Änderung der Shannon- Info !
Das heißt: Der Informationsgewinn entspricht gerade der Änderung der Shannon- Info!


==Siehe auch==
==Siehe auch==


<references />
<references />

Aktuelle Version vom 12. September 2010, 23:57 Uhr




Motivation

Makroskopische thermodynamische Zustände sind gegeben durch die Mittelwerte

M(x)

von Mikroobservablen M(x), interpretiert als Zufallsvariable.

Rückschlüsse von

M(x)

auf die Wahrscheinlichkeitsverteilung

ρ(x)?


Methode

Vorurteilsfreie Schätzung (Jaynes, 1957): (unbiased guess; Prinzip des maximalen Nichtwissens)

  • Verallgemeinerung des Laplacschen Prinzips vom unzureichenden Grund.
    • (Minimum der Shannon- Information I(ρ(x))= Maximum des Nichtwissens S(ρ(x)) liefert Gleichverteilung)
  • Jetzt: Zusätzlich zur Normierung der Pi sind die Mittelwerte von m Zufallsvariablen:
Minn=1,2,...,mMn=i=1NPiMinn=1,...,mm<<N


Annahme:

Jedes Elementarereignis Ai hat gleiche a-priori- Wahrscheinlichkeit, das heißt OHNE zusätzliche Kenntnisse Mn gilt Gleichverteilung über den Ai.

Informationstheoretisches Prinzip

(nach (Jaynes 1922-1998))

Suche die Wahrscheinlichkeitsverteilung, die unter der Erfüllung aller bekannten Angaben als Nebenbedingung die minimale Information enthält:

Also: I(P)=i=1NPilnPi=!=Minimum

Nebenbed.:

i=1NPi=1Mn=i=1NPiMinn=1,...,m

Variation: δI=i=1N(lnPi+1)δPi


Es gilt: von den N Variationen δPi sind nur N-m-1 unabhängig voneinander!

iδPi=0

Lagrange- Multiplikator λ=(Ψ+1)

iMinδPi=0


Lagrange- Multiplikator λn

Anleitung: Wähle Ψ,λn so, dass die Koeffizienten von (m+1)δPi´s verschwinden, die übrigen N-(m+1) sind dann frei variierbar!

Somit:

δI=i=1N(lnPiΨ+λnMin)δPi=!=0


Vorsicht: Auch Summe über ν (Einsteinsche Summenkonvention!)


:Pi=exp(ΨλnMin) verallgemeinerte kanonische Verteilung


Die Lagrange- Multiplikatoren Ψ,λn sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt!

Kontinuierliche Ereignismenge

I(ρ)=ddxρ(x)lnρ(x)=!=Minimum


unter der Nebenbedingung


ddxρ(x)=1ddxρ(x)Mn(x)=Mnn=1,...,m


Durchführung einer Funktionalvariation:

δρ(x)


δI(ρ)=ddx(lnρ(x)+1)δρ(x)=0ddxδρ(x)=0ddxMn(x)δρ(x)=0ddx(lnρΨ+λnMn)δρ(x)=0ρ(x)=exp(ΨλnMn)


Vergleiche: A. Katz, Principles of Statistial Mechanics

ANMERKUNG Schubotz: Siehe auch [1]

Eigenschaften der verallgemeinerten kanonischen Verteilung

hier: noch rein informationstheoretisch,

später: wichtige Anwendungen in der Thermodynamik

Legendre- Transformation:

Sei Ψ(t) eine Bahn!

Dann ist M:=dΨ(t)dt die Geschwindigkeit.

Aus Ψ(M) kann die Bahn Ψ(t) noch nicht rekonstruiert werden, jedoch aus

I(M)=Ψ(t)M(t)t

mit t=t(M):


dIdM=dΨ(t)dtdtMdMMdtdMtM:=dΨ(t)dtdIdM=t


hieraus folgt

M(t)


eingesetzt in

I(M)=Ψ(t)M(t)tΨ(t)


durch Eisnetzen gewinnt man

Ψ(t)


Jedenfalls:


I(M)=Ψ(t)M(t)t


heißt legendre- Transformierte von

Ψ(t).


Anwendung auf die verallgemeinerte kanonische Verteilung:

Pi=exp(ΨλnMin)


Normierung:


iPi=1eΨ=iexp(λnMin)Z



Also gilt:


Ψ=Ψ(λ1,...,λm) und Pi sind durch (λ1,...,λm) vollständig parametrisiert.

Nebenbemerkung

Die Verteilung Pi bzw. ρ(x) wirkt auf dem Raum der Zufallsvariablen Min (diskret) bzw. xRd(kontinuierlich).

(λ1,...,λm) sind Parameter.


Mn sind Erwartungswerte MnR


Beispiel:
x=(q1,...,q3N,p1....,p3N)Γ (Phasenraumelement)

mit Γ als Phasenraum der kanonisch konjugierten Variablen


M(x)=i=13N(pi22m+V(qi)) mikrokanonisch Verteilungsfunktion


M(x)=i=13N(pi22m+V(qi)) als mittlere Energie

Shannon- Information:


I(P)=iPilnPi=iPi(ΨλnMin)=ΨλniPiMinI=Ψ(λ1,...λm)λnMn


Aus Ψ(λ1,...λm)=lniexp(λnMin)λnΨ=i(Min)exp(λnMin)iexp(λnMin)iexp(λnMin)=eΨλnΨ=i(Min)exp(ΨλnMin)exp(ΨλnMin)=PiλnΨ=i(Min)PiλnΨ=Mn


Damit können wir die Legendre- Transformation (verallgemeinert auf mehrere Variablen) identifizieren:


Ψ(t)Ψ(λ1,...λm) Variable λn


MMn=Ψλn neue Variable Mn


I(M)I=ΨλnMn Legendre- Transformierte von Ψ!

Es folgt:


IMn=λn


wegen:


IMn=ΨλmλmMnλmMnMmλnΨλm=MmIMn=λn


Zusammengefasst:


dI=λndMn

Dies ist in der Thermodynamik die Gibbsche Fundamentalgleichung!


Betachte Variation:


MnMn+δMn


dann:


λnλn+δλnΨΨ+δΨPiPi+δPi


Informationsgewinn:


K(P+δP,P)=i(Pi+δPi)ln(Pi+δPi)i(Pi+δPi)lnPii(Pi+δPi)ln(Pi+δPi)=I(P+δP)K(P+δP,P)=(Ψ+δΨ)(λn+δλn)(Mn+δMn)i(Pi+δPi)(ΨλnMni)i(Pi+δPi)(ΨλnMni)=Ψλni(Pi+δPi)Mni=Ψλn(Mn+δMn)K(P+δP,P)=(Ψ+δΨ)(λn+δλn)(Mn+δMn)Ψ+λn(Mn+δMn)=δΨδλn(Mn+δMn)


Wir können die variierten Funktionen für kleine Variationen

δλn

entwickeln:


δΨ=Ψλnδλn+122Ψλnλmδλnδλm+....δMn=Mnλnδλn+122Mnλnλmδλnδλm+....K(P+δP,P)=δΨδλn(Mn+δMn)=(ΨλnδλnMn)δλn+(12λmΨλnMnλm)δλnδλmΨλn=Mn(12λmΨλnMnλm)=12Mnλm(ΨλnδλnMn)=0K(P+δP,P)=12MnλmδλnδλmK(P+δP,P)0


Vergleiche oben

also folgt:


K(P+δP,P)=12Mnλmδλnδλm0Mnλm0


negativ semidefinit, für alle δλm


Definiere Suszeptibilitätsmatrix:


ηmn:=Mnλn=2Ψλnλm


Diese Matrix beschreibt die Änderung von Mm bei Variation von λn:


δM¯=η¯¯δλ¯


bzw.:


η~σλ:=λσMλ=2IMλMσ


In Matrixschreibweise:


δλ¯=η¯¯~δM¯η¯¯~=η¯¯1


Wegen


λn(Ψλm)=λm(Ψλn)(Ψλm)=Mmλn(Ψλm)=ηmn(Ψλn)=Mnλm(Ψλn)=ηnm


Somit:

ηnm ist symmetrisch

AusK(P+δP,P)0 folgt:


ηmnδλmδλn=δMnδλn=η~nmδMnδMm0


Also: negativ- semidefinite quadratisceh Form:


ηnn0η~nn0


Nebenbemerkung:

Also sind I(Mn) und Ψ(λn) konvex!

Zusammenhang mit der Korrelationsmatrix

Qmn:=ΔMmΔMn ist Korrelationsmatrix (siehe oben)
=MmMnc 2. Kumulante


=2Γ(α)αmαn|α=0 mit Kumulantenerzeugender


Γ(α)=lnexp(αnMn)=lniPiexp(αnMin)=lnieΨ(λnαn)Min=ln[eΨie(λnαn)Min]=Ψ(λ)+ln[ie(λnαn)Min]ln[ie(λnαn)Min]=Ψ(λα)Γ(α)=Ψ(λ)Ψ(λα)Qmn=2Ψ(λα)αmαn|α=0=2Ψ(λ)λmλn=ηmn


Suszeptibilität!

Also: Die Korrelationsmatrix ist das Negative der Suszeptibilität!!

Also:

Qmn:=ΔMmΔMn=Mmλn=Mnλm



Fluktuations/ Dissipations- Theorem:

Fluktuationen
Zufällige Schwankungen um den Mittelwert
Dissipation
Systematische Änderung der Mittelwerte!

Korrektur einer Verteilung durch Zusatzinformationen

Sei P0 die Verteilung, die I(P) unter Kenntnis der Nebenbedingungen

iPi0=1iPi0Mim=Mmm=1,...,m
minimalisiert (Vorsicht: Index und Laufende sind ungünstigerweise gleich bezeichnet!)

Jetzt:

Zusatzinformationen (zusätzliche Mittelwerte beobachtet):

iPiViσ=Viσσ=1,...,siPi=1

Prinzip der vorurteilsfreien Schätzung

Suche Minimum des Informationsgewinns


K(P,P0)=iPilnPiPi0


unter dieser Nebenbedingung!!

Also:


i(lnPilnPi0+1+ξ+ξσViσ)δPi=0


mit neuen Lagrange- Multiplikatoren

ξ,ξσ


1+ξ=Ξi(lnPilnPi0Ξ+ξσViσ)δPi=0Pi=Pi0exp(ΞξσViσ)


Mit


Pi0=exp(ΨλnMin)
 folgt:


K(P,P0)=iPilnPiPilnPi0+Pi0lnPi0Pi0lnPi0iPilnPi=I(P)iPi0lnPi0=I(P0)PilnPi0+Pi0lnPi0=i(PiPi0)lnPi0lnPi0=ΨλnMini(PiPi0)(ΨλnMin)=λn(i(PiMin)i(Pi0Min))i(PiMin)=Mni(Pi0Min)=Mn0


Da nun die Mittelwerte

Mn,Mn0

nicht durch die Zusatzinfo geändert werden muss gelten:


K(P,P0)=I(P)I(P0)+λn(i(PiMin)i(Pi0Min))=I(P)I(P0)+λn(MnMn0)keineA¨nderungλn(MnMn0)=0Mn=Mn0


da diese Mittelwerte nicht durch die Zusatzinfo geändert werden!


K(P,P0)=I(P)I(P0)+λn(i(PiMin)i(Pi0Min))=I(P)I(P0)+λn(MnMn0)=I(P)I(P0)


Das heißt: Der Informationsgewinn entspricht gerade der Änderung der Shannon- Info!

Siehe auch

  1. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 5.4.13 (Kap 5.4.3 S46)