Kovariante Ableitung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: <math>{A^\lambda }_{\mu ;\nu } = \frac{{\partial {A^\lambda }_\mu }}{{\partial {x^\nu }}} + \Gamma _{\rho \nu }^\lambda {A^\rho }_\mu - \Gamma _{\mu \nu }^\rho {A^\lam...
 
*>SchuBot
Mathematik einrücken
 
(6 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<math>{A^\lambda }_{\mu ;\nu } = \frac{{\partial {A^\lambda }_\mu }}{{\partial {x^\nu }}} + \Gamma _{\rho \nu }^\lambda {A^\rho }_\mu  - \Gamma _{\mu \nu }^\rho {A^\lambda }_\rho
[[Bild:KovarianteAbleitung.png]]
<source lang="latex">
\begin{align}
T_{{\color{Orange}rs...}; \color{Red}l}^{\color{Blue}ik...}
=
T_{{\color{Orange}rs...}, \color{Red}l}^{\color{Blue} ik...}&
+
\Gamma _{ m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{m\color{Blue}k...}\quad&&
+
\Gamma _{m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{{\color{Blue}r}m\color{Blue}...}... &\quad&
{\color{Blue}\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden oberen Index}} \\
& +
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{m\color{Orange}s...}^{ \color{Blue}ik...}\quad&&
+
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{{\color{Orange}r}m\color{Orange}...}^{ \color{Blue}ik...}...&&
\color{Orange}{\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden unteren Index}} \\
\end{align}
</source>
 
:<math>
\begin{align}
T_{{\color{Orange}rs...}; \color{Red}l}^{\color{Blue}ik...}
=
T_{{\color{Orange}rs...}, \color{Red}l}^{\color{Blue} ik...}&
+
\Gamma _{ m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{m\color{Blue}k...}\quad&&
+
\Gamma _{m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{{\color{Blue}r}m\color{Blue}...}... &\quad&
{\color{Blue}\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden oberen Index}} \\
& +
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{m\color{Orange}s...}^{ \color{Blue}ik...}\quad&&
+
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{{\color{Orange}r}m\color{Orange}...}^{ \color{Blue}ik...}...&&
\color{Orange}{\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden unteren Index}} \\
\end{align}
</math>
</math>
:<math>
{A^{\color{Violet}\lambda }}_{{\color{Orange}\mu};{\color{Red}\nu} }
=
\frac{{\partial {A^{\color{Violet}\lambda }}_{\color{Orange}\mu}}}
{{\partial {x^{\color{Red}\nu} }}}
+
\Gamma _{\rho {\color{Red}\nu} }^{\color{Violet}\lambda }
{A^\rho }_{\color{Orange}\mu}
-
\Gamma _{{\color{Orange}\mu}{\color{Red}\nu} }^\rho
{A^{\color{Violet}\lambda }}_\rho
</math>
== Eigenschaften ==
* erhält Tensoreingeschaft <-> Unterschied zur [[gewöhnlichen Ableitung]]
[[Kategorie:Tensor]]

Aktuelle Version vom 12. September 2010, 17:34 Uhr

Datei:KovarianteAbleitung.png

\begin{align}
T_{{\color{Orange}rs...}; \color{Red}l}^{\color{Blue}ik...}
 =
T_{{\color{Orange}rs...}, \color{Red}l}^{\color{Blue} ik...}&
 +
\Gamma _{ m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{m\color{Blue}k...}\quad&&
 +
\Gamma _{m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{{\color{Blue}r}m\color{Blue}...}... &\quad&
{\color{Blue}\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden oberen Index}} \\
 & +
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{m\color{Orange}s...}^{ \color{Blue}ik...}\quad&&
+
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{{\color{Orange}r}m\color{Orange}...}^{ \color{Blue}ik...}...&&
\color{Orange}{\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden unteren Index}} \\
\end{align}
Trs...;lik...=Trs...,lik...+ΓmliTrs...mk...+ΓmliTrs...rm......u¨ r jeden oberen Index+ΓrlmTms...ik...+ΓrlmTrm...ik......u¨ r jeden unteren Index


Aλμ;ν=Aλμxν+ΓρνλAρμΓμνρAλρ

Eigenschaften