Kovariante Ableitung: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Die Seite wurde neu angelegt: <math>{A^\lambda }_{\mu ;\nu } = \frac{{\partial {A^\lambda }_\mu }}{{\partial {x^\nu }}} + \Gamma _{\rho \nu }^\lambda {A^\rho }_\mu - \Gamma _{\mu \nu }^\rho {A^\lam... |
*>SchuBot Mathematik einrücken |
||
(6 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
< | [[Bild:KovarianteAbleitung.png]] | ||
<source lang="latex"> | |||
\begin{align} | |||
T_{{\color{Orange}rs...}; \color{Red}l}^{\color{Blue}ik...} | |||
= | |||
T_{{\color{Orange}rs...}, \color{Red}l}^{\color{Blue} ik...}& | |||
+ | |||
\Gamma _{ m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{m\color{Blue}k...}\quad&& | |||
+ | |||
\Gamma _{m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{{\color{Blue}r}m\color{Blue}...}... &\quad& | |||
{\color{Blue}\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden oberen Index}} \\ | |||
& + | |||
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{m\color{Orange}s...}^{ \color{Blue}ik...}\quad&& | |||
+ | |||
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{{\color{Orange}r}m\color{Orange}...}^{ \color{Blue}ik...}...&& | |||
\color{Orange}{\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden unteren Index}} \\ | |||
\end{align} | |||
</source> | |||
:<math> | |||
\begin{align} | |||
T_{{\color{Orange}rs...}; \color{Red}l}^{\color{Blue}ik...} | |||
= | |||
T_{{\color{Orange}rs...}, \color{Red}l}^{\color{Blue} ik...}& | |||
+ | |||
\Gamma _{ m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{m\color{Blue}k...}\quad&& | |||
+ | |||
\Gamma _{m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{{\color{Blue}r}m\color{Blue}...}... &\quad& | |||
{\color{Blue}\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden oberen Index}} \\ | |||
& + | |||
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{m\color{Orange}s...}^{ \color{Blue}ik...}\quad&& | |||
+ | |||
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{{\color{Orange}r}m\color{Orange}...}^{ \color{Blue}ik...}...&& | |||
\color{Orange}{\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden unteren Index}} \\ | |||
\end{align} | |||
</math> | </math> | ||
:<math> | |||
{A^{\color{Violet}\lambda }}_{{\color{Orange}\mu};{\color{Red}\nu} } | |||
= | |||
\frac{{\partial {A^{\color{Violet}\lambda }}_{\color{Orange}\mu}}} | |||
{{\partial {x^{\color{Red}\nu} }}} | |||
+ | |||
\Gamma _{\rho {\color{Red}\nu} }^{\color{Violet}\lambda } | |||
{A^\rho }_{\color{Orange}\mu} | |||
- | |||
\Gamma _{{\color{Orange}\mu}{\color{Red}\nu} }^\rho | |||
{A^{\color{Violet}\lambda }}_\rho | |||
</math> | |||
== Eigenschaften == | |||
* erhält Tensoreingeschaft <-> Unterschied zur [[gewöhnlichen Ableitung]] | |||
[[Kategorie:Tensor]] |
Aktuelle Version vom 12. September 2010, 17:34 Uhr
\begin{align}
T_{{\color{Orange}rs...}; \color{Red}l}^{\color{Blue}ik...}
=
T_{{\color{Orange}rs...}, \color{Red}l}^{\color{Blue} ik...}&
+
\Gamma _{ m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{m\color{Blue}k...}\quad&&
+
\Gamma _{m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{{\color{Blue}r}m\color{Blue}...}... &\quad&
{\color{Blue}\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden oberen Index}} \\
& +
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{m\color{Orange}s...}^{ \color{Blue}ik...}\quad&&
+
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{{\color{Orange}r}m\color{Orange}...}^{ \color{Blue}ik...}...&&
\color{Orange}{\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden unteren Index}} \\
\end{align}
Eigenschaften
- erhält Tensoreingeschaft <-> Unterschied zur gewöhnlichen Ableitung