Kovariante Ableitung
Zur Navigation springen
Zur Suche springen
\begin{align}
T_{{\color{Orange}rs...}; \color{Red}l}^{\color{Blue}ik...}
=
T_{{\color{Orange}rs...}, \color{Red}l}^{\color{Blue} ik...}&
+
\Gamma _{ m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{m\color{Blue}k...}\quad&&
+
\Gamma _{m\color{Red}l}^{\color{Blue}i}T_{\color{Orange}rs...}^{{\color{Blue}r}m\color{Blue}...}... &\quad&
{\color{Blue}\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden oberen Index}} \\
& +
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{m\color{Orange}s...}^{ \color{Blue}ik...}\quad&&
+
\Gamma _{\color{Orange}r\color{Red}l}^{m}T_{{\color{Orange}r}m\color{Orange}...}^{ \color{Blue}ik...}...&&
\color{Orange}{\text{f }\!\!\ddot{\mathrm{u}}\!\!\text{ r jeden unteren Index}} \\
\end{align}
Eigenschaften
- erhält Tensoreingeschaft <-> Unterschied zur gewöhnlichen Ableitung