Master Gleichung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Zeile 70: Zeile 70:
Integrieren
Integrieren
<math>\tilde{\rho}=\rho_0 - \mathfrak{i} \int_0^t [\tilde{H_I},\tilde{\rho}]\,dt'</math>
<math>\tilde{\rho}=\rho_0 - \mathfrak{i} \int_0^t [\tilde{H_I},\tilde{\rho}]\,dt'</math>
auf rechter Seite einsetzen
<math>\begin{align}
  & {{d}_{t}}\tilde{\rho }=-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}}-\mathfrak{i}\int_{0}^{t}{[{{{\tilde{H}}}_{I}},\tilde{\rho }]}\,d{t}' \right] \\
& =-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}} \right]-\left[ {{{\tilde{H}}}_{I}},\int_{0}^{t}{[{{{\tilde{H}}}_{I}},\tilde{\rho }]}\,d{t}' \right] \\
& =-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}} \right]-\int_{0}^{t}{\left[ {{{\tilde{H}}}_{I}},\left[ {{{\tilde{H}}}_{I}},\,\tilde{\rho } \right] \right]}d{t}' 
\end{align}</math>

Version vom 8. September 2009, 10:37 Uhr

Betrachtung eines mikr. Hamiltonoperators H=HS+HB+HI bestehend aus

Die Umgebung setzt sich aus einem Reservoir


Wechselwirkung besteht aus 4 Teilen HI=SLHI+SRHI+LSHI+RSHI

  • Von Links ins System SLHI
  • Vor Rechts ins System SRHI
  • Vom System nach Links LSHI
  • Vom System nach Rechts RSHI

mit SXHI=k,iXVkXakei und XSHI=k,iXVkXakei

ei erzeugt ein Electron im System mit Energieniveau i. ei vernichtet ...

Transformation ins WW-Bild

Operator ins WWBild

A~(t):=U0AU0 mit U0=exp(iH0t) und H0=HS+HB

Starte von Liouville-von-Neumann-Gleichung ρ˙=i[H,ρ]

mit der Lösung

ρ(t)=Uρ0U

mit U=exp(iHt)

Beweis

tU=iHU

sowie

tU=iHU

Dann ist dtρ=iHUρ0U+Uρ0iHUi[H,ρ]+U(tρ0)U0

beweis ende

lösung ende

Die LVN-Gln wird zu



dtρ~=dt(U0ρU0)=iH0U0ρU0iU0ρH0U0+U0dt(ρ)U0=i[H0,ρ~]iU0[H,ρ]U0=i[H0,ρ~]iU0[H0+HI,ρ]U0=i[H0,ρ~]i[H0,ρ~]iU0[HI,ρ]U0=i[H~I,ρ~]

Lösung

Integrieren ρ~=ρ0i0t[HI~,ρ~]dt auf rechter Seite einsetzen

dtρ~=i[H~I,ρ0i0t[H~I,ρ~]dt]=i[H~I,ρ0][H~I,0t[H~I,ρ~]dt]=i[H~I,ρ0]0t[H~I,[H~I,ρ~]]dt