Master Gleichung: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Zeile 70: | Zeile 70: | ||
Integrieren | Integrieren | ||
<math>\tilde{\rho}=\rho_0 - \mathfrak{i} \int_0^t [\tilde{H_I},\tilde{\rho}]\,dt'</math> | <math>\tilde{\rho}=\rho_0 - \mathfrak{i} \int_0^t [\tilde{H_I},\tilde{\rho}]\,dt'</math> | ||
auf rechter Seite einsetzen | |||
<math>\begin{align} | |||
& {{d}_{t}}\tilde{\rho }=-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}}-\mathfrak{i}\int_{0}^{t}{[{{{\tilde{H}}}_{I}},\tilde{\rho }]}\,d{t}' \right] \\ | |||
& =-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}} \right]-\left[ {{{\tilde{H}}}_{I}},\int_{0}^{t}{[{{{\tilde{H}}}_{I}},\tilde{\rho }]}\,d{t}' \right] \\ | |||
& =-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}} \right]-\int_{0}^{t}{\left[ {{{\tilde{H}}}_{I}},\left[ {{{\tilde{H}}}_{I}},\,\tilde{\rho } \right] \right]}d{t}' | |||
\end{align}</math> |
Version vom 8. September 2009, 10:37 Uhr
Betrachtung eines mikr. Hamiltonoperators bestehend aus
Die Umgebung setzt sich aus einem Reservoir
Wechselwirkung besteht aus 4 Teilen
erzeugt ein Electron im System mit Energieniveau i. vernichtet ...
Transformation ins WW-Bild
Operator ins WWBild
Starte von Liouville-von-Neumann-Gleichung
mit der Lösung
Beweis
sowie
beweis ende
lösung ende
Die LVN-Gln wird zu