Sinussaite: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „Eine sinusförmige Welle läuft eine Saite entlang in positiver x-Richtung mit der Geschwindigkeit 600 cm/s. Ihre Amplitude beträgt 1 cm und ihre Wellenlänge 3 …“
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
Eine sinusförmige Welle läuft eine Saite entlang in positiver x-Richtung mit der Geschwindigkeit 600 cm/s. Ihre Amplitude beträgt 1 cm und ihre Wellenlänge 3 cm. Zum Zeitpunkt t = 0 s befindet sich ein Saitensegment bei x = 0 cm in einer Auslenkung von 0,8 cm und bewegt sich aufwärts.
Eine sinusförmige Welle läuft eine Saite entlang in positiver x-Richtung mit der Geschwindigkeit 600 cm/s. Ihre {{FB|Amplitude}} beträgt 1 cm und ihre {{FB|Wellenlänge}} 3 cm. Zum Zeitpunkt t = 0 s befindet sich ein Saitensegment bei x = 0 cm in einer Auslenkung von 0,8 cm und bewegt sich aufwärts.


a) Skizzieren Sie die Welle bei t = 0 s für 0 < x < 4 cm.
a) Skizzieren Sie die Welle bei t = 0 s für 0 < x < 4 cm.
{{Lösung|{{PhIngGl|4.33}} ohne Dämpfung ß=0|[[Datei:SinusSaite.png]]}}


b) Bestimmen Sie die Funktion von x und t der Welle.
b) Bestimmen Sie die Funktion von x und t der Welle.
{{Lösung|Anfangsbedinung verwenden um {{FB|Phasenfaktor}} <math>\alpha</math> zu bestimmen.|Code=N@c = 6; N@\[Lambda] = 0.02; N@A = 0.01; N@A0 = 0.008;
\[Alpha] = ArcCos[A0/A];
k = 2 \[Pi]/\[Lambda];
\[Nu] = c /\[Lambda];
\[Omega] = 2 \[Pi] \[Nu];
u[x_, t_] := A Cos[k x + -\[Omega] t + \[Alpha]]
Plot[u[x, 0], {x, 0, 0.04}]
u[x, t]|Ende=Die Lösung der {{FB|Wellengleichung}} lautet also hier:
:<math>u(x,t)=A \cos \left(-\cos ^{-1}\left(\frac{\text{A0}}{A}\right)+\frac{2 \pi  c t}{\lambda }-\frac{2 \pi  x}{\lambda }\right)</math>}}


{{Klausuraufgabe
{{Klausuraufgabe

Version vom 21. Dezember 2010, 20:44 Uhr

Eine sinusförmige Welle läuft eine Saite entlang in positiver x-Richtung mit der Geschwindigkeit 600 cm/s. Ihre Amplitude beträgt 1 cm und ihre Wellenlänge 3 cm. Zum Zeitpunkt t = 0 s befindet sich ein Saitensegment bei x = 0 cm in einer Auslenkung von 0,8 cm und bewegt sich aufwärts.

a) Skizzieren Sie die Welle bei t = 0 s für 0 < x < 4 cm.

b) Bestimmen Sie die Funktion von x und t der Welle.

Lösung

Anfangsbedinung verwenden um Phasenfaktor α zu bestimmen. Mathematica Rechnung:

N@c = 6; N@\[Lambda] = 0.02; N@A = 0.01; N@A0 = 0.008;
\[Alpha] = ArcCos[A0/A];
k = 2 \[Pi]/\[Lambda];
\[Nu] = c /\[Lambda];
\[Omega] = 2 \[Pi] \[Nu];
u[x_, t_] := A Cos[k x + -\[Omega] t + \[Alpha]]
Plot[u[x, 0], {x, 0, 0.04}]
u[x, t]


Abschlussbemerkung:Die Lösung der Wellengleichung lautet also hier:

u(x,t)=Acos(cos1(A0A)+2πctλ2πxλ)


Fakten zur Klausuraufgabe Sinussaite

  • Datum: {{#arraymap:SS08|,|x|x}}
  • Aufgabe: {{#arraymap:3|,|x|x}}
  • Abschnitt: {{#arraymap:MSW|,|x|x}}
  • Punkte: 6
  • Tutorium: