Symplektische Struktur: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „ <math>\underline{\psi }:=\left. \left( \begin{align} & \underline{q} \\ & \underline{p} \\ \end{align} \right) \right\}2f</math> Vektor der Ableitungen <ma…“
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
<math>\underline{\psi }:=\left. \left( \begin{align}
<math>\underline{\psi }:=\left. \left( \begin{align}
   & \underline{q} \\  
   & \underline{q} \\  
Zeile 18: Zeile 17:
=symplektisches Skalarprodukt=
=symplektisches Skalarprodukt=


<math>\left\langle \underline{x},\underline{y} \right\rangle ={{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x}}}^{T}}\underline{\underline{J}}\underline{y}</math>
<math>\left\langle \underline{x},\underline{y} \right\rangle ={{{\underline{x}}}^{T}}\underline{\underline{J}}\underline{y}</math>
Eigenschaften:
Eigenschaften:
* schiefsymmetrisch
* schiefsymmetrisch
Zeile 59: Zeile 58:
<math>\begin{align}
<math>\begin{align}
   & \underline{{\dot{\phi }}}={{M}^{-1}}\underline{{\dot{\psi }}} \\  
   & \underline{{\dot{\phi }}}={{M}^{-1}}\underline{{\dot{\psi }}} \\  
  & {{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{H}}}_{\phi }}={{M}^{T}}{{\underline{H}}_{\psi }}   
  & {{{\underline{H}}}_{\phi }}={{M}^{T}}{{\underline{H}}_{\psi }}   
\end{align}</math>
\end{align}</math>

Version vom 19. Juli 2009, 00:41 Uhr

ψ_:=(q_p_)}2f

Vektor der Ableitungen H_ψ=(qHpH)

Metrik im Phasenraum J__=(0110)

symplektisches Skalarprodukt

x_,y_=x_TJ__y_ Eigenschaften:

  • schiefsymmetrisch
  • bilinear
  • nicht entartet

erzeugende Kanonische Trafo

M1(q,Q,t):p=qM1,P=QM1piqk=2M1Qkqi=Pkqi

analog


M2(q,P,t)M3(p,Q,t)M4(p,P,t)

also Insgesamt

ψ_Mϕ_

mit 

ϕ_:=(Q_P_)}2f

Eigenschaften der Trafo

M1=J1MTJJ=MTJMdet(M)=1

aus LA folgt

ϕ˙_=M1ψ˙_H_ϕ=MTH_ψ