Thermodynamische Potenziale

Aus PhysikWiki
Version vom 12. September 2010, 23:56 Uhr von *>SchuBot (Interpunktion, replaced: ) → ) (5), ( → ( (10))
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen




(vergl. § 2.3, 4.1)

Ausgangspunkt: Entropiegrundfunktion S(U,V,N) eines einfachen thermischen Systems

Ziel: Bestimmung des Gleichgewichtszustandes für verschiedene Austauschprozesse aus dem Extremalprinzip (analog zum Potenzial in der Mechanik)

Je nach Art der Austauschprozesse ergeben sich verschiedene Sätze der extensiven: (S,U,V,N) und intensiven: T,p,μ Größen als natürliche Variable, die experimentell kontrolliert werden (durch die Umgebung aufgeprägt)

Zugehörige thermodynamische Potenziale → ggf. Legendre- Trafo

  • der Entropiegrundfunktion S(U,V,N) (unüblich)
  • der Energiegrundfunktion U(S,V,N)

Gibbsche Fundamentalgleichung (aus 1. + 2. Hauptsatz)

für reversible Prozesse:


dU=TdSpdV+μdN


Hieraus lassen sich die Zusammenhänge zwischen den Potenzialen und den Variablen gewinnen:

Entropie
S(U,V,N)
SU=1TSV=pTSN=μT
Energie
U(S,V,N)
US=TUV=pUN=μ
Freie Energie
F(T,V,N)=UTS=kTlnZ
dF(T,V,N)=dUTdSSdT=TdSpdV+μdNTdSSdT=μdNpdVSdT(FT)V,N=S(FV)T,N=p(FN)T,V=μ
Enthalpie
H(S,p,N)=U+pV
dH(S,p,N)=TdSpdV+μdN+pdV+Vdp=μdN+TdS+Vdp(HS)p,N=T(Hp)S,N=V(HN)S,p=μ

Gibbsche Energie:G(T,p,N)=UTS+pV=kTΨ(T,p)
dG(T,p,N)=TdSpdV+μdNTdSSdT+pdV+Vdp=μdNSdT+Vdp(GT)p,N=S(Gp)T,N=V(GN)T,p=μ

Großkanonisches Potenzial
J(T,V,μ)=UTSμN=kTlnY
dJ(T,V,μ)=TdSpdV+μdNTdSSdTμdNNdμ=pdVSdTNdμ(JT)V,μ=S(JV)T,μ=p(Jμ)T,V=N

Durch zweimaliges Differenzieren nach den natürlichen Variablen gewinnt man die Maxwell-Relationen:

2USV=2UVS(pS)V,N=(TV)S,N2USN=2UNS(μS)V,N=(TN)S,V2UVN=2UNV(μV)S,N=(pN)S,V2FTV=2FVT(pT)V,N=(SV)T,N

Merkschema (sogenanntes Guggenheimschema)

Siehe auch [1]
dU=TdSpdVdF=SdTpdVdG=SdT+VdpdH=TdS+Vdp


Dabei kann man versuchen, die Maxwell- Relationen direkt aus dem Schema auszulesen, oder aber man differenziert die Gibbschen Fundamentalrelationen der Potenziale zweimal (sicherer).

Ein negatives Vorzeichen muss man genau dann beachten, wenn man auf der Diagonalen von rechts nach links geht!

Maxwell- Relationen:

(VS)p=(Tp)S(Sp)T=(VT)p(pT)V=(SV)T(TV)S=(pS)V

Schöll und vierzig weitere Beteiligte interpretierten das Guggenheimschema ähnlich aber doch ganz anders, nämlich:

Zusammenhang mit der Suszeptibilitätsmatrix (§ 1.3, S. 26)

ημν=Mμλν=Mνλμ=2Ψλμλν

Einige wichtige Suszeptibilitäten:

isobarer Ausdehnungskoeffizient
α:=1V(VT)p=1V2GTp
isotherme Kompressibilität
κT:=1V(Vp)T=1V2Gp2
Wärmekapazitäten
Cp:=T(ST)p=T2GT2CV:=T(ST)V=T2FT2

Zusammenhang zwischen Cp und CV

(Übung!!):

CV=CpTVα2κT

Physikalische Interpretation der thermodynamischen Potenziale

freie Energie
Für isotherme, reversible Prozesse ist dF=d(UTS)=dUTdS=pdV=δWr (vorletzte Gleichheit über Gibbs Fundamentalgleichung) ist der Anteil der inneren Energie, der in (nutzbare) Arbeit umgewandelt werden kann
Enthalpie
Für isobare, reversible Prozesse ist dH=d(U+pV)=dU+pdV=Gibbs=TdS=δQr ist die Erhöhung der inneren Energie durch zugeführte Wärme
Gibb´sche freie Energie
Für isobare, isotherms, reversible Prozesse mit Teilchenaustausch (z.B. transport, chemische Reaktionen) ist dG=d(UTS+pV)=dUTdS+pdV=αμαdNα ist die Änderung der inneren Energie durch Teilchenzahländerung verschiedenster (vorhandener Teilchen).

Wegen der Extensivität der Entropie für homogene Makrosysteme

dS=1TdU+pTdVαμαTdNαS=1TU+pVTαμαTNαG=UTS+pV=αμαNα=GG=αμαNα

für reine fluide Substanz (Gas oder Flüssigkeit, nur eine Komponente, gilt):

G=Nμ

bezogen auf ein Mol:

g=μ

→ die molare Gibbsche freie Energie ist dem chemischen Potenzial gleich!

Berechnung der molaren Gibb´schen freien Energie:

(gp)T=v(T,p) Molvolumen

Ideales Gas:

v(T,p)=RTp thermische Zustandsgleichung
g(T,p)=dpv(T,p)+a(T) mit beliebiger Funktion a(T)
g(T,p)=dpv(T,p)+a(T)=RTlnp+a(T)R=8,314J/K*mol

die ideale Gaskonstante R=kNA Produkt aus Boltzmannkonstante und Advogadro- Zahl

Zustandsgleichungen

Aus S(U,V) oder U(S,V) können durch Substitution bzw. Differenziation die

kalorischen Zustandsgleichungen
U(T,V) und
thermischen Zustandsgleichungen p=p(T,V) berechnet werden.

Wegen des 2. Hauptsatzes sind diese beiden Zustandsgleichungen nicht unabhängig!

TdS=dU+pdV Gibbsche Fundamentalgl.

Bilde

S(T,V)U(T,V)
T(ST)VdT+T(SV)TdV=(UT)VdT+[(UV)T+p]dV(ST)V=1T(UT)V(SV)T=1T(UV)T+pT(UV)T=T(SV)Tp

Maxwell- Relation:

(SV)T=(pT)V(UV)T=p+T(pT)V


Beispiel:

ideales Gas:pV=nRT mit der Molzahl n ist volumenunabhängig!!