Prüfungsfragen:Elektrodynamik

Aus PhysikWiki
Zur Navigation springen Zur Suche springen

ultrakurzer lichtblitz-> Gaußsches Wellenpaket ψ(x,t)=c(k)ei(ωtkx)dk. mit c(k)=e(kk0)2(2/a)2 ergibt \psi(x,0)=(2πa2)1/4ex2/a2eik0x.

beziehung zwischen Orts und Impulsraum -> unendlich schaft im Ortsraum -> beleibig unschaft im Impulsraum vici versa FT?


Dispersionsrelation in Optik und Quantenmechanik--> Allgemein Beziehung zwischen der Kreisfrequenz ω und der Kreiswellenzahl k ω = f(k). Optik Brechzahlen Lich im Medium k=ωvphase=n(ω)ωc0 in der Optik zerfließen Wellenpakete im Vakuum nicht

Teilchenphysik Energie Impuls beziehung ω=E=p22m=2k22m (QM Wellenpaket zerfießt (anschaulich: Aufenthaltswahrscheinlichkeit wird geringer das Teilchen an einem festen Ort zu finden))

Pointingtheorem

  • hinschreiben
  • größen erklären
  • Herleitung zkizzieren (aus Maxwell Gleichungen)
  • was ist -j*E Herleitung über Lorentzkraftdichte

Siehe [1]

Potentiale

Zusammenhang mit Feldern V(\mathbf r) = m \cdot \Phi (\mathbf r) \quad \text{bzw.} \quad V(\mathbf r) = q \cdot \Phi (\mathbf r).

  • Definition
  • Potentialgleichungen

Eichungen

  • Welche Eichungen gibt es?

Lorentz, Coulom allgemein \vec E = - \frac{\partial\vec A}{\partial t} - \operatorname{grad}\,\, \phi

und im magnetischen Feld

   \vec B = \operatorname{rot}\,\, \vec A


  • aus Eichungen folgend verschiedene Gleichungen für Potentiale 2,
  • welche Lösungen haben die Potentiale darin
  • wie sehen diese in Coulombeichung aus

-->Coulomb-Eichung (auch Strahlungseichung oder transversale Eichung) {\rm div} \mathbf A (\mathbf r,t)=0 Die Lösung für das skalare Potential \phi(\mathbf r,t) entspricht im Falle der Coulomb-Eichung dem Coulomb-Potential, welches das Potential einer elektrostatischen Ladungsverteilung beschreibt E(r,t)=gradϕ(r,t)A(r,t)t. A(r)=14πVv(r)|rr|d3r http://de.wikipedia.org/wiki/Coulombeichung

  • Was folgt für die Retardierung der Potentiale
  • Warum braucht beim Coulombpotential das Sklarpotential keine Retardierung

(Nur die Felder sind die phys. relevanten Größen; wird durch retardierung im Vektorpotential wieder "gut" gemacht.)

  • wo bleibt die Zeitabhängigkeit beim skalaren Potential in Coulombeichung

--> Diese ist schon drin, jedoch wird nach dieser nicht differenziert --> keine Retardierung, jedoc sind die Felder physikalsicher relevant, beim E-Feld gibt es einen Anteuil vom Vektorpotential, der die Retardierung hereinbringt.

Beugung am Spalt

(Wellenlänge muss in der Grössenordnung der Spaltgrösse sein

  • Berechnung der Wellenlänge (mathematisch)

einfallende Welle trifft auf Spalt

entstehung von Kugelwellen die interferrieren

math

Greensche Gleichungen Das Potential in einem Volumen wird durch das Potential am Rand bestimmt

  • Bornsche Näherung?

In nullter Näherung rechnet man direkt mit dem eingestrahltem Feld

Wellenleitung

Grenzbedingungen an Leitern

?

  • Randbedingungen für EM Feld
  • Randbedingungen im Dielektrikum

(Stetigkeitsbedingungen n sei Flächennormale n.B=0 nxE=0 n.D=0 und die letze MW Gln. nxH=0 bei Metall Ladungs und Stromdichten in D,H

  • wie kommt man auf n.B=0

Maxwellgln in Integralschreibweise \int df n .B= 0

Multipolentwicklung

  • ideen

(Entfernung zu Quelle groß)

  • benennung der einzelnen Terme

statisch

  • wie geht's

starte bei el Potential ϕ(r)=d3rρ(r)|rr| Entwicklung von 1|rr| nach kleinen r', da weit genug von Quelle entfernt

1|rr|=1|r|rr|rr|3+</math>

1. Term Monopolmoment wie Punktladung

2. Term Dipolmoment 3. Quadrupolmoment

=dynamisch

retardiertes Vektorpotential hingeschrieben und Näherungen erklärt (Nenner und Argument bei j) 1. Term entsprocht der elektrischen Dipolstrahlung hingeschieben:

Retardierung Dipoltherm

=relativistische Elektrodynamik

  • was ist besonder? -->E+B->FTENSOR