Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1325.5 on revision:1325
* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.5)
(force rerendering)Occurrences on the following pages:
Hash: 488fe7a9c897f5798fc1d332c715b0dc
TeX (original user input):
f(x)\cong L,x\cong {{\dot{q}}_{k}}
TeX (checked):
f(x)\cong L,x\cong {{\dot {q}}_{k}}
LaTeXML (experimentell; verwendet MathML) rendering
MathML (3.217 KB / 758 B) :
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\displaystyle f(x)\cong L,x\cong{{\dot{q}}_{k}}}}" display="inline">
<semantics id="p1.1.m1.1a">
<mrow id="p1.1.m1.1.12" xref="p1.1.m1.1.12.1.cmml">
<mrow id="p1.1.m1.1.12.2" xref="p1.1.m1.1.12.2.cmml">
<mrow id="p1.1.m1.1.12.2.1" xref="p1.1.m1.1.12.2.1.cmml">
<mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">f</mi>
<mo id="p1.1.m1.1.12.2.1.1" xref="p1.1.m1.1.12.2.1.1.cmml"></mo>
<mrow id="p1.1.m1.1.12.2.1.2" xref="p1.1.m1.1.12.2.1.cmml">
<mo stretchy="false" id="p1.1.m1.1.2" xref="p1.1.m1.1.12.2.1.cmml">(</mo>
<mi id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">x</mi>
<mo stretchy="false" id="p1.1.m1.1.4" xref="p1.1.m1.1.12.2.1.cmml">)</mo>
</mrow>
</mrow>
<mo id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">≅</mo>
<mi id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">L</mi>
</mrow>
<mo id="p1.1.m1.1.7" xref="p1.1.m1.1.12.1a.cmml">,</mo>
<mrow id="p1.1.m1.1.12.3" xref="p1.1.m1.1.12.3.cmml">
<mi id="p1.1.m1.1.8" xref="p1.1.m1.1.8.cmml">x</mi>
<mo id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml">≅</mo>
<msub id="p1.1.m1.1.12.3.1" xref="p1.1.m1.1.12.3.1.cmml">
<mover accent="true" id="p1.1.m1.1.10" xref="p1.1.m1.1.10.cmml">
<mi id="p1.1.m1.1.10.2" xref="p1.1.m1.1.10.2.cmml">q</mi>
<mo id="p1.1.m1.1.10.1" xref="p1.1.m1.1.10.1.cmml">˙</mo>
</mover>
<mi id="p1.1.m1.1.11.1" xref="p1.1.m1.1.11.1.cmml">k</mi>
</msub>
</mrow>
</mrow>
<annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
<apply id="p1.1.m1.1.12.1.cmml" xref="p1.1.m1.1.12">
<csymbol cd="ambiguous" id="p1.1.m1.1.12.1a.cmml" xref="p1.1.m1.1.7">formulae-sequence</csymbol>
<apply id="p1.1.m1.1.12.2.cmml" xref="p1.1.m1.1.12.2">
<approx id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5"/>
<apply id="p1.1.m1.1.12.2.1.cmml" xref="p1.1.m1.1.12.2.1">
<times id="p1.1.m1.1.12.2.1.1.cmml" xref="p1.1.m1.1.12.2.1.1"/>
<ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝑓</ci>
<ci id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">𝑥</ci>
</apply>
<ci id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6">𝐿</ci>
</apply>
<apply id="p1.1.m1.1.12.3.cmml" xref="p1.1.m1.1.12.3">
<approx id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9"/>
<ci id="p1.1.m1.1.8.cmml" xref="p1.1.m1.1.8">𝑥</ci>
<apply id="p1.1.m1.1.12.3.1.cmml" xref="p1.1.m1.1.12.3.1">
<csymbol cd="ambiguous" id="p1.1.m1.1.12.3.1.1.cmml" xref="p1.1.m1.1.12.3.1">subscript</csymbol>
<apply id="p1.1.m1.1.10.cmml" xref="p1.1.m1.1.10">
<ci id="p1.1.m1.1.10.1.cmml" xref="p1.1.m1.1.10.1">˙</ci>
<ci id="p1.1.m1.1.10.2.cmml" xref="p1.1.m1.1.10.2">𝑞</ci>
</apply>
<ci id="p1.1.m1.1.11.1.cmml" xref="p1.1.m1.1.11.1">𝑘</ci>
</apply>
</apply>
</apply>
</annotation-xml>
<annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\displaystyle f(x)\cong L,x\cong{{\dot{q}}_{k}}}}</annotation>
</semantics>
</math>
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (479 B / 238 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>≅</mo><mi>L</mi><mo>,</mo><mi>x</mi><mo>≅</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results