Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1326.141 on revision:1326

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1326.141)

(force rerendering)

Occurrences on the following pages:

Hash: 858d7d985a7006add0893d5a2ba3e9a7

TeX (original user input):

\bar{x}:=\left( \begin{matrix}
   q  \\
   p  \\
\end{matrix} \right)

TeX (checked):

{\bar {x}}:=\left({\begin{matrix}q\\p\\\end{matrix}}\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (2.369 KB / 635 B) :

x ¯ := ( q p ) assign ¯ 𝑥 𝑞 𝑝 {\displaystyle{\displaystyle\bar{x}:=\left(\begin{matrix}q\\ p\\ \end{matrix}\right)}}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\displaystyle\bar{x}:=\left(\begin{matrix}q\\&#10;p\\&#10;\end{matrix}\right)}}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">
      <mover accent="true" id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">
        <mi id="p1.1.m1.1.1.2" xref="p1.1.m1.1.1.2.cmml">x</mi>
        <mo stretchy="false" id="p1.1.m1.1.1.1" xref="p1.1.m1.1.1.1.cmml">¯</mo>
      </mover>
      <mo id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">:=</mo>
      <mrow id="p1.1.m1.1.7.1" xref="p1.1.m1.1.5.cmml">
        <mo id="p1.1.m1.1.4" xref="p1.1.m1.1.5.cmml">(</mo>
        <mtable rowspacing="0pt" id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">
          <mtr id="p1.1.m1.1.5a" xref="p1.1.m1.1.5.cmml">
            <mtd columnalign="center" id="p1.1.m1.1.5b" xref="p1.1.m1.1.5.cmml">
              <mi id="p1.1.m1.1.5.1.1.1" xref="p1.1.m1.1.5.1.1.1.cmml">q</mi>
            </mtd>
          </mtr>
          <mtr id="p1.1.m1.1.5c" xref="p1.1.m1.1.5.cmml">
            <mtd columnalign="center" id="p1.1.m1.1.5d" xref="p1.1.m1.1.5.cmml">
              <mi id="p1.1.m1.1.5.2.1.1" xref="p1.1.m1.1.5.2.1.1.cmml">p</mi>
            </mtd>
          </mtr>
        </mtable>
        <mo id="p1.1.m1.1.6" xref="p1.1.m1.1.5.cmml">)</mo>
      </mrow>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">
        <csymbol cd="latexml" id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">assign</csymbol>
        <apply id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">
          <ci id="p1.1.m1.1.1.1.cmml" xref="p1.1.m1.1.1.1">¯</ci>
          <ci id="p1.1.m1.1.1.2.cmml" xref="p1.1.m1.1.1.2">𝑥</ci>
        </apply>
        <matrix id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.7.1">
          <matrixrow id="p1.1.m1.1.5a.cmml" xref="p1.1.m1.1.7.1">
            <ci id="p1.1.m1.1.5.1.1.1.cmml" xref="p1.1.m1.1.5.1.1.1">𝑞</ci>
          </matrixrow>
          <matrixrow id="p1.1.m1.1.5b.cmml" xref="p1.1.m1.1.7.1">
            <ci id="p1.1.m1.1.5.2.1.1.cmml" xref="p1.1.m1.1.5.2.1.1">𝑝</ci>
          </matrixrow>
        </matrix>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\displaystyle\bar{x}:=\left(\begin{matrix}q\\
p\\
\end{matrix}\right)}}</annotation>
  </semantics>
</math>

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (588 B / 270 B) :

x¯:=(qp)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>q</mi></mtd></mtr><mtr><mtd><mi>p</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • x¯
  • q
  • p

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results