Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1632.13 on revision:1632

* Page found: Eigenwerte und Eigenzustände von hermiteschen Operatoren (eq math.1632.13)

(force rerendering)

Occurrences on the following pages:

Hash: 503704582177163abf389d3d2825616c

TeX (original user input):

\begin{align}
& \left\langle  {{\Psi }_{1}} \right|\hat{F}\left| {{\Psi }_{2}} \right\rangle ={{F}_{2}}\left\langle  {{\Psi }_{1}}  |  {{\Psi }_{2}} \right\rangle  \\
& \left\langle  {{\Psi }_{2}} \right|\hat{F}\left| {{\Psi }_{1}} \right\rangle ={{F}_{1}}\left\langle  {{\Psi }_{2}} | {{\Psi }_{1}} \right\rangle =\left\langle  {{\Psi }_{1}} \right|\hat{F}\left| {{\Psi }_{2}} \right\rangle *={{F}_{2}}\left\langle  {{\Psi }_{1}}  |  {{\Psi }_{2}} \right\rangle \quad falls\ \hat{F}={{{\hat{F}}}^{+}},{{F}_{2}}={{F}_{2}}* \\
& \left\langle  {{\Psi }_{2}} \right|\hat{F}\left| {{\Psi }_{1}} \right\rangle =\left\langle  {{{\hat{F}}}^{+}}{{\Psi }_{2}}  |  {{\Psi }_{1}} \right\rangle ={{F}_{2}}\left\langle  {{\Psi }_{2}} | {{\Psi }_{1}} \right\rangle  \\
& \left\langle  {{\Psi }_{2}} \right|\hat{F}\left| {{\Psi }_{1}} \right\rangle -\left\langle  {{\Psi }_{2}} \right|\hat{F}\left| {{\Psi }_{1}} \right\rangle =\left( {{F}_{2}}-{{F}_{1}} \right)\left\langle  {{\Psi }_{2}} | {{\Psi }_{1}} \right\rangle  \\ 

\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.976 KB / 542 B) :

Ψ1|F^|Ψ2=F2Ψ1|Ψ2Ψ2|F^|Ψ1=F1Ψ2|Ψ1=Ψ1|F^|Ψ2*=F2Ψ1|Ψ2fallsF^=F^+,F2=F2*Ψ2|F^|Ψ1=F^+Ψ2|Ψ1=F2Ψ2|Ψ1Ψ2|F^|Ψ1Ψ2|F^|Ψ1=(F2F1)Ψ2|Ψ1
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>*</mo><mo>=</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mspace width="1em"></mspace><mi>f</mi><mi>a</mi><mi>l</mi><mi>l</mi><mi>s</mi><mspace width="0.5em"/><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>=</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo>,</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>*</mo></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Eigenwerte und Eigenzustände von hermiteschen Operatoren page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results